Math, asked by Anonymous, 9 months ago

please solve this question ..........please......​

Attachments:

Answers

Answered by SwaggerGabru
5

\huge\underline{\overline{\mid{\bold{\red{ANSWER-}}\mid}}}

To Prove ∑nr=03r×Crn=4n by binomial expansion

(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=

∑nr=0Crn×an−r×br

if

we compare the two terms

∑nr=03r×Crn=∑nr=0Crn×an−r×br

hence if we make a=1 and b=3

we get ∑nr=0Crn×1n−r×3r

which is same as given term,

∑nr=03r×Crn

putting the same values in (a+b)n=(1+3)n=4n

Answered by pulakmath007
6

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \blacksquare \:

FORMULA TO BE IMPLEMENTED

We are aware of the Binomial Expansion that

 {(x + y)}^{n}  =  \: ^{n}C_0 \:  {x}^{n}  + \:   ^{n}C_1 \:  {x}^{n - 1} y +     \:  ^{n}C_2 \:  {x}^{n - 2}   {y}^{2}  +   \:  ^{n}C_3 \:  {x}^{n - 3}   {y}^{3}  + ........ + \: ^{n}C_n  \:  {y}^{n}

 \blacksquare

CALCULATION

Here

 {(x + y)}^{n}  =  \: ^{n}C_0 \:  {x}^{n}  + \:   ^{n}C_1 \:  {x}^{n - 1} y +     \:  ^{n}C_2 \:  {x}^{n - 2}   {y}^{2}  +   \:  ^{n}C_3 \:  {x}^{n - 3}   {y}^{3}  + ........ + \: ^{n}C_n  \:  {y}^{n}

Putting x = 1 & y = 3 we get

 {(1 + 3)}^{n}  =  \: ^{n}C_0 \:  {1}^{n}  + \:   ^{n}C_1 \:  {1}^{n - 1} \times  3 \: +     \:  ^{n}C_2 \:  {1}^{n - 2}   \times  {3}^{2}  +   \:  ^{n}C_3 \:  {1}^{n - 3}   \times  {3}^{3}  + ........ + \: ^{n}C_n  \:  \times  {3}^{n}

 \implies \:  \displaystyle \:  {(4)}^{n}  =  \: ^{n}C_0 \:    + \:   ^{n}C_1 \:  \times  3 \: +     \:  ^{n}C_2 \:   \times  {3}^{2}  +   \:  ^{n}C_3 \:   \times  {3}^{3}  + ........ + \: ^{n}C_n  \:  \times  {3}^{n}

 \implies \:  \displaystyle \:    \: ^{n}C_0 \:    + \:   ^{n}C_1 \:  \times  3 \: +     \:  ^{n}C_2 \:   \times  {3}^{2}  +   \:  ^{n}C_3 \:   \times  {3}^{3}  + ........ + \: ^{n}C_n  \:  \times  {3}^{n}    = {4}^{n}

 \implies \: \sum_{r=0}^{n} 3^{r} \: \:   ^{n}C_r =  {4}^{n}

Similar questions