Math, asked by apoooorva, 11 months ago

please solve this question



prove it​

Attachments:

Answers

Answered by Anonymous
15

\boxed{\textbf{\large{To prove :}}}

 \frac{ \sin(2x) }{1 -  \cos(2x) }  =  \cot(x) \\

\boxed{\textbf{\large{proof :}}}

here remember that,

 (\sin(2x)  = 2 \sin(x) . \cos(x))

And

(1 -  \cos(2x)  = 2 { \sin }^{2} (x))

Therefor ,

LHS =

 =\frac{ \sin(2x) }{1 -  \cos(2x) }\\

 =  \frac{2 \sin(x)  \cos(x) }{2 { \sin}^{2} x}\\

 =  \frac{ \cos(x) }{ \sin(x) }\\

 =  \cot(x)\\

= RHS

hence proved .

_________________________________

Answered by avinash2201
85

Step-by-step explanation:

From trigonometric ratios of compound angles we have known that

➡➡Sin(A+B)=sinAcosB+cosAsinB

If here we take the same angle A it will be

➡➡ Sin(A+A)=sinAcosA+cosAsinA

➡➡Or, sin2A= sinA.2cosA ........(i)

And

From Another formula

Cos(A+B)=cosAcosB - sinAsInB

Or, cos(A+A)=cosAcosA - sinAsinA

or \: cos2a =  {cos}^{2} a -  {sin}^{2} a \\  \\  =  >  \cos(2a)  = 1 -  {sin}^{2} a -  {sin}^{2} a \\  \\  =  >  \cos(2a)  = 1 - 2 {sin}^{2} a \: .........(2)

To proof that :

LHS:---

 \frac{sin2x}{1 - cos2x}  \\ \\   =  \frac{2 \sin(x) \cos(x)  }{1 - 1 + 2 {sin}^{2}x }  \\  \\  =  >  \frac{ \cos(x) }{ \sin(x) }  \\  \\  =  > cotx(rhs)

hope it helps✨✨✨✨

Similar questions