Math, asked by aaaaaaaaa41, 1 year ago

please solve this question.
SIMPLIFY IT PLEASE

Attachments:

Answers

Answered by CEOEkanshNimbalkar
1

Answer : 54√5 - 406i - 45

Step by step explanation :

( \sqrt{5}  + 7i) \times ( \sqrt{5}  - 7i) {}^{2}  + ( - 2 + 7i) {}^{2}

Write the exponential as a multiplication.

 =  > ( \sqrt{5}  + 7i) \times ( \sqrt{5}  - 7i) \times ( \sqrt{5}  - 7i) + ( - 2 + 7i) {}^{2}

Use the commutative property to reorder the terms.

 =  > ( \sqrt{5}  + 7i) \times ( \sqrt{5}  - 7i) \times ( \sqrt{5}  - 7i) + (7i - 2) {}^{2}

Using

(a + b)(a - b) = a {}^{2}  - b {}^{2}

, simplify the product.

 =  > (5 - 49i {}^{2} ) \times ( \sqrt{5 }  - 7i) + (7i - 2) {}^{2}

Using

(a - b) {}^{2}  = a { }^{2}  - 2ab + b {}^{2}

expand the expression

 =  > (5 - 49i) {}^{2}  \times ( \sqrt{5}  - 7i) + 49i {}^{2}  - 28i + 4

By definition, i^2 = - 1

 =  > (5 - 49 \times ( - 1)) \times ( \sqrt{5}  - 7i) + 49 \times ( - 1) - 28i + 4

Any expression multiplied by - 1 equals its opposite

 =  > (5 + 49) \times ( \sqrt{5}  - 7i) - 49 - 28i + 4

Add the numbers

 =  > 54( \sqrt{5}  - 7i) - 49 - 28i + 4

Distribute 54 through the parenthesis

 =  > 54 \sqrt{5}  - 378i - 49 - 28i + 4

Collect the like terms by calculating the sum or difference of their coefficients

 =  > 54 \sqrt{5}  - 406i - 49 + 4

Calculate the sum. Keep the sign of the number with the larger absolute value and subtract the smaller absolute value from the larger

 =  > 54 \sqrt{5}  - 406i - (49 - 4)

Subtract the numbers

 =  > 54 \sqrt{5}  - 406i - 45

Similar questions