Math, asked by marutidesaiga2328508, 1 month ago

Please solve this question....ಥ_ಥ Spammers will be reported & right answers will be marked as brainliest...!!!!

[1 +  \frac{1}{ \tan^{2}θ }] [1 + \frac{1}{ \cot^{2}θ } ] =  \frac{1}{ \sin^{2} θ -  \sin^{4}θ  }

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \left \{ 1 +  \dfrac{1}{ \tan^{2} ( \theta) } \right \} \left \{ 1 +  \dfrac{1}{ \cot^{2} ( \theta) } \right \}

  = \left \{ 1 + \cot^{2} ( \theta)  \right \} \left \{ 1 +\tan^{2} ( \theta)  \right \} \\

  =  \cosec^{2} ( \theta)  \cdot \sec^{2} ( \theta)   \\

  =  \dfrac{1}{ \cos^{2} ( \theta)  \cdot \sin^{2} ( \theta)}   \\

  =  \dfrac{1}{ \sin^{2} ( \theta)  \cdot(1 -  \sin^{2} ( \theta))}   \\

  =  \dfrac{1}{ \sin^{2} ( \theta)  -  \sin^{4} ( \theta)}   \\

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\bigg[1 + \dfrac{1}{ {tan}^{2}\theta } \bigg]\bigg[1 + \dfrac{1}{ {cot}^{2} \theta} \bigg]

We know,

\red{\rm :\longmapsto\:\boxed{\tt{  \frac{1}{tanx} = cotx}}} \: and \:  \red{\boxed{\tt{  \frac{1}{cotx} = tanx}}}

So, using this, we get

\rm \:  =  \: (1 +  {cot}^{2}\theta)(1 +  {tan}^{2}\theta)

\rm \:  =  \:  {cosec}^{2}\theta \times  {sec}^{2}\theta

\rm \:  =  \: \dfrac{1}{ {sin}^{2}\theta \:  {cos}^{2}\theta}

\rm \:  =  \: \dfrac{1}{ {sin}^{2}\theta \:  (1 - {sin}^{2}\theta)}

\rm \:  =  \: \dfrac{1}{ {sin}^{2}\theta \:   - {sin}^{4}\theta}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Identities Used :-

\boxed{\tt{  {cosec}^{2}x -  {cot}^{2}x = 1 \: }}

\boxed{\tt{  {sec}^{2}x -  {tan}^{2}x = 1 \: }}

\boxed{\tt{ cosecx =  \frac{1}{sinx} \: }}

\boxed{\tt{ secx =  \frac{1}{cosx} \: }}

\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions