please solve this question
step by step exaplanation!!
Attachments:
Answers
Answered by
0
Answer:
clearly Lhs:
tan^2 x +cot^2 x + 2
= ( tan x + cot x )^2
= ( sinx/cos +cosx/ sin x)^2
= (1/cosx.sinx) ^2
= sec^2x.cosec^2x
=Rhs
Answered by
1
L.H.S.
=> sin² x/cos²x + cos²x/sin²x + 2
L.C.M. = sin²x.cos²x
=> (sin⁴x + cos⁴x + 2sin²x.cos²x) ÷ sin²x.cos²x
=> [(sin²x)² + (cos²x)² + 2sin²x.cos²x] ÷ sin²x.cos²x
since a²+b²+2ab = (a+b)²
=> [sin²x + cos²x]² ÷ sin²x.cos²x
sin²x + cos²x = 1
=> 1 ÷ sin²x.cos²x
=> sec²x.cosec²x = R.H.S.
Similar questions