Math, asked by Anand3559, 1 day ago

Please solve this question Step By Step Explanation. ​

Attachments:

Answers

Answered by talpadadilip417
0

Step-by-step explanation:

 \color{purple} \text{ \boxed{ \tt \: Solution :}  \qquad \:  \qquad \: We know that} \\  \\   \color{red}\[ \tan (\propto+\beta)=\frac{\tan \propto+\tan \beta}{1-\tan \propto \tan \beta} \]

 \tt \color {blue}\therefore \tan (\alpha+\beta)=  \left[\begin{array}{l}  \tt\dfrac{\dfrac{1}{\sqrt{x\left(x^{2}+x+1\right)}}+\dfrac{\sqrt{x}}{\sqrt{x^{2}+x+1}}} { 1-\dfrac{1}{\sqrt{x\left(x^{2}+x+1\right)}} \dfrac{\sqrt{x}}{\sqrt{x^{2}+x+1}}}\end{array}\right]

 \begin{array}{ll}  \tt \color{darkorange} \\ = &   \tt \color{darkorange}\dfrac{(x+1) \sqrt{x^{2}+x+1}}{\sqrt{x} x(x+1)} \\  \\  \tt \color{red} = &  \tt \color{red} \sqrt{\dfrac{x^{2}}{x^{3}}+\dfrac{x}{x^{3}}+\dfrac{1}{x^{3}}} \\  \\   \tt \color{maroon}= &   \tt \color{maroon}\sqrt{x^{-1}+x^{-2}+x^{-3}} \\  \\  \tt \color{navy} = &   \tt \color{navy}\tan \gamma \\  \\    \boxed{ \tt \color{darkgreen}\therefore \alpha+\beta=\gamma} & \end{array}

Similar questions