Math, asked by darkrai7xxx, 4 months ago

please solve this question ..
step by step please​

Attachments:

Answers

Answered by 567sweetysharma
0

I hope this answer helps you

Attachments:
Answered by mathdude500
1

Answer:

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}} \\  \\ evaluate ∫  {2x}^{3}  { {e}^{x} }^{2} dx \\  =  ∫( x \times  {2x}^{2}  { {e}^{x} }^{2}) dx   \\ =  ∫  {e}^{ {x}^{2}}  {(x)}^{2}  \times 2xdx\\ \small\bold\red{(put \:  {x}^{2} = t \:  =  >  \: 2xdx = dt) }\\   =  ∫  {e}^{t} tdt \\\small\bold\red{using \: integration \: by \: parts} \\   = t ∫{e}^{t} dt - ∫ (\frac{d}{dt} t  (∫  {e}^{t} dt))dt \\  = t {e}^{t}  -  ∫  {e}^{t} dt \\  = t {e}^{t}  -  {e}^{t}  + c \\  =  {e}^{t} (t - 1) + c \\  =  {e}^{ {x}^{2} } ( {x}^{2}  - 1) + c

\huge \fcolorbox{black}{cyan}{♛hope \: it \: helps \: you♛}

Similar questions