Math, asked by srijansrivastav, 1 year ago

Please solve this question. The best answer will be awarded as brainliest

Attachments:

Answers

Answered by PranavPore09
1

CosΘ-SinΘ=\sqrt{2}sinΘ

CosΘ=\sqrt{2}Θ+SinΘ

CosΘ=(\sqrt{2}+1)sinΘ

(\sqrt{2}-1)cosΘ=(\sqrt{2}-1)(\sqrt{2}+1)sinΘ

\sqrt{2}-1)cosΘ=(2-1)sinΘ

\sqrt{2}-1)cosΘ=sinΘ

\sqrt{2} cosΘ-cosΘ=sinΘ

\sqrt{2} cosΘ=sinΘ+cosΘ


       


Answered by siddhartharao77
3

Given Equation is cosθ - sinθ = √2 sin θ.

On Squaring both sides, we get

⇒ (cosθ - sinθ)² = (√2 sinθ)²

⇒ cos²θ + sin²θ - 2 cosθsinθ = 2 sin²θ

⇒ cos²θ + sin²θ - 2 cosθsinθ = sin²θ + sin²θ

⇒ cos²θ - 2 cosθsinθ = sin²θ

⇒ 2 cos²θ - cos²θ - 2 cosθsinθ = sin²θ

⇒ 2 cos²θ = cos²θ + sin²θ + 2 cosθsinθ

⇒ 2 cos²θ = (cosθ + sinθ)²

√2 cosθ = cos θ + sin θ.



Hope this helps!


Similar questions