please solve this question the question is show that
Attachments:
Answers
Answered by
1
Here is the stepwise soln to the problem... hope u fd it useful....
Attachments:
Answered by
0
LHS = SinA.CosA- ]{SinA.CosA(90°-A)}/Sec(90°-A) ] - [{CosA.SinA(90°-A).SinA}/Cosec(90°-A)]
=>SinA.CosA - [ (SinA.SinA.CosA)/CosecA] - [(CosA.SinA.SinA)/SecA]
=> SinA.CosA - [Sin^3A.CosA] - [Cos^3A.SinA]
=> SinA.CosA [1-Sin^2 A - Cos^2 A]
=> SinA.CosA [ 1 - (Sin^2A + Cos^2A)]
=> SinA.CosA [1-1]
=> SinA.CosA.0
= O
HENCE PROVED#
=>SinA.CosA - [ (SinA.SinA.CosA)/CosecA] - [(CosA.SinA.SinA)/SecA]
=> SinA.CosA - [Sin^3A.CosA] - [Cos^3A.SinA]
=> SinA.CosA [1-Sin^2 A - Cos^2 A]
=> SinA.CosA [ 1 - (Sin^2A + Cos^2A)]
=> SinA.CosA [1-1]
=> SinA.CosA.0
= O
HENCE PROVED#
Similar questions