Math, asked by symashah000, 1 month ago

please solve this question with easy steps​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

We know that,

\rm :\longmapsto\:80\degree  = 70\degree  + 10\degree

So,

\rm :\longmapsto\:tan80\degree  =tan( 70\degree  + 10\degree)

We know that,

 \underbrace{\boxed{ \sf{ \:tan(x + y) =  \frac{tanx + tany}{1 - tanxtany}}}}

So, using this identity, we get

\rm :\longmapsto\:tan80\degree  = \dfrac{tan70\degree  + tan10\degree }{1 - tan70\degree  \: tan10\degree }

\rm :\longmapsto\:tan70\degree + tan10\degree  = tan80\degree  - tan80\degree tan70\degree tan10\degree

Now, we know that

 \underbrace{\boxed{ \sf{ \:tan(180\degree  - x) = tanx}}}

So,

\boxed{ \sf{ \:tan80\degree  = tan(180\degree  - 100\degree ) =  - tan100\degree }}

So, substituting this value, we get

\rm :\longmapsto\:tan70\degree + tan10\degree  =  - tan100\degree  +  tan100\degree tan70\degree tan10\degree

\rm :\longmapsto\:tan70\degree + tan10\degree  +  tan100\degree =  tan100\degree tan70\degree tan10\degree

\rm :\longmapsto\:tan10\degree + tan70\degree  +  tan100\degree =  tan100\degree tan70\degree tan10\degree

Hence, Proved

Additional Information :-

\boxed{ \sf{ \:sin(x + y) = sinxcosy + sinycosx}}

\boxed{ \sf{ \:sin(x  -  y) = sinxcosy  -  sinycosx}}

\boxed{ \sf{ \:cos(x  -  y) = cosxcosy  +   sinysinx}}

\boxed{ \sf{ \:cos(x  +  y) = cosxcosy  -    sinysinx}}

\boxed{ \sf{ \:tan(x - y) =  \frac{tanx - tany}{1 + tanx \: tany}}}

\boxed{ \sf{ \: {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y)}}

\boxed{ \sf{ \: {cos}^{2}x -  {sin}^{2}y = cos(x + y)cos(x - y)}}

Similar questions