Math, asked by kaustubhg73p8e8uy, 1 year ago

Please solve this question..
x
 {x}^{x \sqrt{x} }  =  {x \sqrt{x} }^{x}

Attachments:

Answers

Answered by Anonymous
3

Answer : (D) 64/27

________________________

Solution :

________________

 {x}^{x \sqrt[3]{x} }  =  ({x. \sqrt[3]{x}) }^{x}  \\  \\  =  >  {x}^{x. {x}^{ \frac{1}{3} } }  =  {(x. {x}^{ \frac{1}{3} } )}^{x}  \\  \\   =  >  {x}^{ {x}^{ \frac{4}{3} } }  =  {x}^{ \frac{4x}{3} }  \\  \\  =  >  {x}^{ \frac{4}{3} }  =  \frac{4x}{3}

Taking cube both the sides :

 {x}^{4}  =  \frac{64 {x}^{3} }{27}  \\  \\  =  > 27 {x}^{4}  = 64 {x}^{3}  \\  \\  =  > 27x = 64 \\  \\  =  > x =  \frac{64}{27}

Similar questions