Math, asked by Abdulrazak182, 11 months ago

please solve this (specifically for 333333)​

Attachments:

Answers

Answered by BendingReality
14

Answer:

\displaystyle \sf \longrightarrow 1 \\

Step-by-step explanation:

Given :

\displaystyle \sf \frac{d}{dx}\left\{\tan^{-1}\left(\frac{a\sin x+b\cos x}{a\cos x-b \sin x}\right)\right\} \\ \\

We have to find it derivative :

Dividing by a cos x we get :

\displaystyle \sf \longrightarrow \frac{d}{dx}\left\{\tan^{-1}\left(\frac{\dfrac{a\sin x}{a\cos x} +\dfrac{b\cos x}{a\cos x}}{\dfrac{a\cos x}{a\cos x}- \dfrac{b\sin x}{a\cos x}}\right)\right\} \\ \\

\displaystyle \sf \longrightarrow \frac{d}{dx}\left\{\tan^{-1}\left(\frac{\tan x +\dfrac{b}{a}}{ 1 -\dfrac{b}{a}.\tan x}\right)\right\} \\ \\

We know :

\displaystyle \sf \tan^{-1} A+\tan^{-1} B=\tan^{-1}\left(\frac{A+B}{1-A.B} \right) \\ \\

\displaystyle \sf \longrightarrow \frac{d}{dx}\left\{\tan^{-1}\left(\tan x \right)+\tan^{-1}\left( \frac{b}{a} \right)\right\} \\ \\

We also know :

\displaystyle \sf \tan^{-1} (\tan \theta) = \theta \\ \\

\displaystyle \sf \longrightarrow \frac{d}{dx}\left\{x+\tan^{-1}\left( \frac{b}{a} \right)\right\} \\ \\

Since there is no x variable in tan inverse term :

It will consider as constant. We know derivative of constant is zero.

\displaystyle \sf \longrightarrow \frac{d}{dx} (x)+\frac{d}{dx}\left(\tan^{-1}\left( \frac{b}{a} \right)\right) \\ \\

\displaystyle \sf \longrightarrow 1+0 \\ \\

\displaystyle \sf \longrightarrow 1

Hence we get required answer.

Answered by medha3333333333
2

oy Mr. padukunnavaa

eppudu padukovadamenaa

poraaaaaaaaaaaaaaaaaaaaaaaaaaa

dear. pls mark it as BRAINLIEST

pleaseeeeeeee

Similar questions