Math, asked by justastudent24, 25 days ago

Please solve this step by step :)

Attachments:

Answers

Answered by LokikAgarwal
20

Answer:

M + 63 = 136 (external angle property)

M = 73 degree

Answered by KnightLyfe
29

Question:

Find the value of \bold{m} in the figure.

Given:

  • \angle ABC={63}^{o}
  • \angle ACD={136}^{o}

To Find:

  • Value of \bold{m}

Solution:

We have, ∆ABC with an exterior angle \angle ACD . For finding the value of m. We firstly need to find interior angle \angle C .

\angle BCD is an straight angle. So,

\rightarrow\mathsf{\angle BCA+\angle ACD={180}^{o}}

\rightarrow\mathsf{\angle BCA+{136}^{o}={180}^{o}}

\rightarrow\mathsf{\angle BCA={180}^{o}-{136}^{o}}

\rightarrow\mathsf{\angle BCA={44}^{o}}

Now, ABC is a triangle. So, sum of all three angle in the triangle is 180°. Therefore,

\dashrightarrow\mathsf{\angle ABC+\angle BCA+\angle CAB={180}^{o}}

\dashrightarrow\mathsf{{63}^{o}+{44}^{o}+m={180}^{o}}

\dashrightarrow\mathsf{{107}^{o}+m={180}^{o}}

\dashrightarrow\mathsf{m={180}^{o}-{107}^{o}}

\dashrightarrow\mathsf{m={73}^{o}}

Hence, the value of m in ∆ABC is 73°.

Alternative Method:

We know, that sum of two opposite interior angle is equal to exterior angle. Therefore,

\rightarrow\mathsf{\angle BAC+\angle ABC=\angle ACD}

\rightarrow\mathsf{m+{63}^{o}={136}^{o}}

\rightarrow\mathsf{m={136}^{o}-{63}^{o}}

\rightarrow\mathsf{m={73}^{o}}

───────────────────────────────────────

Attachments:
Similar questions