Math, asked by YourHelperAdi, 1 month ago

please solve this
if \:  \frac{ {x}^{3}  + 4x {y}^{2} }{ {4x}^{2} y +  {y}^{3} }  =  \frac{15}{16}  \\ find \: x:y

please solve with full explanation
please try to give with picture​

moderators, brainly stars or maths aryabhatt try to solve​

Answers

Answered by veerapushkar
0

Answer:

x : y = ( 60x^2 + 15y^2 ) : ( 16x^2 + 64y^2 )

Step-by-step explanation:

 \frac{ {x}^{3} + 4x {y}^{2}  }{4 {x}^{2}y +  {y}^{3}  }  =  \frac{15}{16} \\ by \: cross \: multiplication \\ 16 {x}^{3}  + 64x {y}^{2}  = 60 {x}^{2} y + 15 {y}^{3} \\  16x( {x}^{2}  + 4 {y}^{2} ) = 15y(4 {x}^{2}  +  {y}^{2} ) \\  \frac{16x}{15y}  =  \frac{4 {x}^{2} +  {y}^{2}  }{   {x}^{2} + 4 {y}^{2}  }  \\  \frac{x}{y}  =  \frac{60 {x}^{2} +15 {y}^{2}   }{16 {x}^{2} + 64 {y}^{2}  }

which means x : y = ( 60x^2 + 15y^2 ) : ( 16x^2 + 64y^2 )

Similar questions