please solve this
Attachments:
siddhartharao77:
is my answer correct?
Answers
Answered by
0
Given : (1 + m^2)x^2 + 2mcx + (c^2 - a^2) = 0.
On comparting with ax^2 + bx + c = 0, we get
a = (1 + m^2), b = 2mc, c = (c^2 - a^2).
Given that roots are equal.
= > b^2 - 4ac = 0
= > (2mc)^2 - 4(1+m^2)(c^2-a^2) = 0
= > 4m^2c^2 - 4(c^2 - a^2 + c^2m^2 - m^2a^2) = 0
= > 4m^2c^2 - 4c^2 + 4a^2 - 4c^2m^2 + 4m^2a^2 = 0
= > 4m^2a^2 - 4c^2 + 4a^2 = 0
= > m^2a^2 - c^2 + a^2 = 0
= > a^2(1 + m^2) - c^2 = 0
= > a^2 (1 + m^2) = c^2.
Hope this helps!
On comparting with ax^2 + bx + c = 0, we get
a = (1 + m^2), b = 2mc, c = (c^2 - a^2).
Given that roots are equal.
= > b^2 - 4ac = 0
= > (2mc)^2 - 4(1+m^2)(c^2-a^2) = 0
= > 4m^2c^2 - 4(c^2 - a^2 + c^2m^2 - m^2a^2) = 0
= > 4m^2c^2 - 4c^2 + 4a^2 - 4c^2m^2 + 4m^2a^2 = 0
= > 4m^2a^2 - 4c^2 + 4a^2 = 0
= > m^2a^2 - c^2 + a^2 = 0
= > a^2(1 + m^2) - c^2 = 0
= > a^2 (1 + m^2) = c^2.
Hope this helps!
Similar questions