Math, asked by amitrawatinbox, 1 year ago

Please solve this trigonometric equation!!​

Attachments:

Answers

Answered by Anonymous
3

Solution....(swipe left)

 L.H.S. = \frac{ \cos(2a )\cos(3a)   -  \cos(2a)  \cos(7a)  +  \cos(a)  \cos(10a) }{ \sin(4a) \sin( 3a) -  \sin(2a)   \sin(5a) + sin(4a) \sin(7a)   }  \\  =  \frac{ \cos(5a) +  \cos( a)   -  \cos(9a)  -  \cos(5a) +  \cos(11a)   +  \cos(9a) }{ \cos(a) -  \cos(7a)  -  \cos(3a) +  \cos(7a)  +  \cos(3a)   -  \cos(11a)  }  \\  =  \frac{ \cos(a) +  \cos(11a)  }{ \cos(a)  -  \cos(11a) }  \\  =  \frac{ \cos(6a - 5a)  +  \cos(6a + 5a) }{ \cos(6a - 5a)  -  \cos(6a + 5a) }  \\  =  \frac{2 \cos(6a)  \cos(5a) }{2 \sin(6a) \sin(5a)  }  \\  =  \cot(6a)   \cot(5a) =R.H.S.(proved) \\  \\ formula \: used \:  ..........\\ 2 \cos(a)  \cos(b)  =  \cos(a  - b)  +  \cos(a + b)  \\ 2 \sin(a)  \sin(b)  =  \cos(a - b)  -  \cos(a + b)

Hope this helps you ✌️

Similar questions