Math, asked by tanishkabhujbal, 10 months ago

please solve this trigonometry <br />to prove ques​

Attachments:

Answers

Answered by kaushik05
63

 \huge  \boxed{\red{ \mathfrak{solution}}}

To prove :

  \bold{ \sqrt{ \frac{cosec \: x - 1}{cosec \: x + 1} }  =  \frac{1}{sec \: x + tan \: x}} \\

LHS

 \implies \bold{  \sqrt{ \frac{cosec \: x - 1}{cosec \: x + 1} }  }\\

Rationalise the denominator :

 \implies \bold{  \sqrt{ \frac{cosec \: x - 1}{cosec \:x + 1} \times  \frac{cosec \: x - 1}{cosec \: x - 1}  }  }\\  \\  \implies \bold{  \sqrt{ \frac{( {cosec \: x - 1)}^{2} }{ {cosec}^{2}x -  {1}^{2}  } } } \\  \\  \implies \bold{  \sqrt{ \frac{( {cosec \: x - 1)}^{2} }{ {cot}^{2} x} } } \\  \\  \implies \bold{ \frac{cosec \: x - 1}{cot \: x} } \\  \\  \implies \bold{  \frac{cosec \: x}{cot \: x}  -  \frac{1}{cotx} } \\  \\  \implies \bold{ \frac{ \frac{1}{sinx} }{ \frac{cosx}{sinx} }  - \:  \frac{1}{ \frac{cosx}{sinx} } } \\  \\  \implies \bold{  \frac{ \frac{1}{ \cancel{sinx}} }{ \frac{cosx}{ \cancel{sinx}} }  -  \frac{sinx}{cosx} } \\  \\  \implies \bold{  \frac{1}{cosx}  -  \frac{sinx}{cosx} } \\  \\  \implies \bold{secx \:  - tanx}

Now again rationalise the numerator :

=> secx -tanx ×(secx+tanx)/(secx+tanx)

=> sec^2x-tan^2x/ secx + tanx

=> 1/ secx + tanx

proved .

Formula :

cosec^2x-cot^2x=1

sec^2x-tan^2x=1

Similar questions