Math, asked by mananrao700, 2 months ago

Please Solve this with explanation:​

Attachments:

Answers

Answered by dingdongapril1987
0

Answer:

sure send full photo it's not clear

Answered by Anonymous
28

Question :-

\sf\dfrac{(64)^\frac{-1}{6} \times (216)^\frac{-1}{3}\times (81)^\frac{-1}{4}}{(512)^\frac{-1}{3} \times (16)^\frac{-1}{4} \times (9)^\frac{-1}{2} }

Answer :-

\implies\sf\dfrac{(64)^\frac{-1}{6} \times (216)^\frac{-1}{3}\times (81)^\frac{-1}{4}}{(512)^\frac{-1}{3} \times (16)^\frac{-1}{4} \times (9)^\frac{-1}{2} }

\implies\sf\dfrac{(512)^{ \frac{1}{3} } \times  {(9)}^{ \frac{1}{2} }  }{( {16})^{ \frac{1}{4} }  \times ( {64})^{ \frac{1}{6}}  \times ( {216})^{ \frac{1}{3} }  \times ( {81})^{ \frac{1}{4} } }

\implies\sf\dfrac{(8^3)^\frac{1}{3} \times (3^2)^\frac{1}{2} }{(2^4)^\frac{1}{4} \times (2^6)^\frac{1}{6} \times (6^3)^\frac{1}{3} \times (3^4)^\frac{1}{4}}

\implies\sf\dfrac{8 \times 3}{2 \times 2 \times 6 \times 3}

\implies\sf\dfrac{2^3 \times 3}{2^2 \times 2 \times 3 \times 3}

\implies\sf \dfrac{\cancel{2^3} \times 3}{\cancel{2^3} \times 3^3}

\implies\sf\dfrac{3}{3^3}

\implies\sf3^{1-3}

\implies\sf 3^{-2}

\implies\sf\dfrac{1}{3^2}

\implies\boxed{\sf\dfrac{1}{9}}


amansharma264: Awesome
Similar questions