please solve this with steps
Attachments:
Answers
Answered by
4
Answer:
f tan 25 degree=a then the value of ( (tan 205-tan 115)/(tan 245+ tan 335) in terms of a is?
If tan 25 degree=a
then the value of ( (tan 205−tan 115)/(tan 245+ tan 335) in terms of a is
tan205°=sin205°/cos205°
=(−sin25°)/(−cso25°)=tan25°=a
tan 115=tan(90+25) =−cot25° =−1/a
(tan 245)=sin(180+65°)/cos(180+65°) =(−sin65°)/(−cso65°)=cos25°/sin25° =1/a
tan 335=sin(360−25°)/cos(360−25°) =(−sin25°)/(cso25°)=−tan25°=−a
Hence
( (tan 205−tan 115)/(tan 245+ tan 335) =( (tan 25°−cot25°)/(cot25°−tan25°)
={a−(−1/a)}/(1/a−a) ={(a²+1)/a)}/{(1−a²)/a} =(a²+1)/(1−a²)
Anonymous:
thank you
Answered by
5
Answer:
OPTION C
Step-by-step explanation:
tan 25° = p
tan 245°
= tan ( 180° + 65° )
= tan 65° [ tan ( A + 180° ) = tan A ]
= tan ( 90° - 25° )
= cot 25° [ tan ( 90 - A ) = cot A ]
= 1/tan 25°
= 1/p ..............( 1 )
tan 335°
= tan ( 180° + 155° )
= tan 155°
= tan ( 180° - 25° )
= tan ( 180° + (-25° ) )
= - tan 25°
= - p ............( 2 )
tan 205°
= tan( 180° + 25° )
= tan 25°
= p .............( 3 )
tan 115°
= tan( 90° + 25° )
= tan ( 90° - ( - 25° ) )
= - cot 25°
= - 1/tan 25°
= - 1/p .................( 4 )
From ( 1 ) , ( 2 ) , ( 3 ) and ( 4 ) we get :
( tan 245 ° + tan 335° ) / ( tan 205° - tan 115° )
⇒ ( 1/p - p ) / ( p - ( -1/p ) )
⇒ ( 1 - p² ) / p / ( p² + 1 ) / p
⇒ ( 1 - p² ) / ( 1 + p² )
Similar questions