Math, asked by amitjlahoti, 11 months ago

Please solve this work sheet
Best answer marked as brainliest

Attachments:

Answers

Answered by MaheswariS
1

Answer:

1.

(k-1)x^2+kx+1

Given: one of the zero is -3

Let the other zero be \beta

sum of zeros:

\alpha+\beta=\frac{-b}{a}

-3+\beta=\frac{-k}{k-1}

\beta=\frac{-k}{k-1}+3

\beta=\frac{-k+3(k-1)}{k-1}

\beta=\frac{-k+3k-3}{k-1}

\beta=\frac{2k-3}{k-1}......(1)

product of zeros:

\alpha.\beta=\frac{c}{a}

(-3)\beta=\frac{1}{k-1}

\beta=\frac{1}{-3(k-1)}......(2)

from (1) and (2)

\frac{1}{-3(k-1)}=\frac{2k-3}{k-1}

\frac{1}{-3}=\frac{2k-3}{1}

1=-6k+9

-8=-6k

4=3k

k=\frac{4}{3}

2.

Given:

\alpha\:and\beta are zeros of x^2-5x+6

sum of zeros:

\alpha+\beta=\frac{-b}{a}

\alpha+\beta=\frac{-(-5)}{1}

\alpha+\beta=5

product of zeros:

\alpha.\beta=\frac{c}{a}

\alpha.\beta=\frac{6}{1}

\alpha\beta=6

Now,

\alpha+\beta-3\alpha\beta

=5-3(6)

=5-18

=-13

Similar questions