Math, asked by subhagorain03, 10 months ago

please solve thise math​

Attachments:

Answers

Answered by Anonymous
1

Given \:  \: Question \:  \: Is \:  \\  \\  \tan(x)  +  \sin(x)  = m \\ and \\  \tan(x)  -  \sin(x)  = n \\  \\ multiply \:  \: both \: the \: two \: equations \\  \\ mn = ( \tan(x)  +  \sin(x) )( \tan(x)  -  \sin(x) ) \\  \\ mn = ( \tan {}^{2} (x)  -  \sin {}^{2} (x) ) \\ becoz \:  \:  \: (x - y)(x + y) = (x {}^{2}  - y {}^{2} ) \\  \\ mn = ( \frac{ \sin {}^{2} (x) }{ \cos {}^{2} (x) }  -  \sin {}^{2} (x) ) \\  \\becoz \:  \:  \:  \:  \:  \:  \:  \:  \tan(x)  =  \frac{ \sin(x) }{ \cos(x) }  \\  \\ mn =  \sin {}^{2} (x) ( \frac{1}{ \cos {}^{2} (x) }  - 1) \\  \\ mn =  \sin {}^{2} (x) ( \frac{1 -  \cos {}^{2} (x) }{ \cos {}^{2} (x) } ) \\  \\ mn =  \sin {}^{2} (x) ( \frac{ \sin {}^{2} (x) }{ \cos {}^{2} (x) } ) \\  \\ becoz \:  \:  \: 1 -  \cos {}^{2} (x)  =  \sin {}^{2} (x)  \\  \\ mn =  \sin {}^{2} (x)  \times  \cos {}^{2} (x)  \\  \\ becoz \:  \:  \:  \frac{ \sin {}^{2} (x) }{ \cos {}^{2} (x) }  =  \tan {}^{2} (x)  \\  \\ therefore \:  \:  \:  \: mn =  \sin {}^{2} (x)  \times  \tan {}^{2} (x)

Similar questions