Math, asked by justknowitwithkb, 7 months ago

please solve urgeng​

Attachments:

Answers

Answered by Anonymous
2

✧ Q.30. :-

Since, O is the centre and r is the radius of the circle and PS and PT are the tangents to the circle.

To proof :-

 \bf \angle \: OTS \:  =  \angle \: OST = 30 \degree

 \bf \huge{ \mathfrak{ \underline{ \underline{  \purple  P \green r  \orange o \blue o \pink f :- }}}}

As, PT and PS are tangents drawn in the circle.

\bf \implies \angle \: OTP \:  =  \angle \: OSP\:  = 90 \degree \: \\ \bf \: (tangents \: to \: the \: circle \: is \:  \perp \: to \: the \: radius \: to \: the \: point \: of \: contact)

\rm\green{\underline{\underline{\bold{✧In \:  \triangle \: OTP,}}}}

 \bf \: sin \angle \: P</p><p>OPT \:  =  \frac{OT}{OP}  =  \frac{x}{2x}  \\  \bf \therefore \: sin \angle \: OPT \:  =  \frac{1}{2}   \\  \bf \: so \:  \angle \: OPT \:  = 3 0\degree \\  \bf \: then \:  \angle \:  OTP + \angle  \:OPT+  \angle \: TOP= 180 \degree \\  \bf \: (by \: angle \: sum \: property)  \\  \bf \:  \implies  \: 90  \degree+ 30 \degree \:  +  \angle \: top \:  = 180 \degree \\  \bf \:  \therefore \angle \: top \:  = 180 \degree - 120 \degree =60  \degree \\  \:

\rm\blue{\underline{\underline{\bold{✧ Now,\:\:∆PTS}}}}

Is an Isoceles ∆ and OP is the angle bisector of TPS.

  \bf \therefore \:   TS  \:  \perp OP \\  \bf \:   \implies \:   \angle \: OQT \:  \angle \: OQS\:  = 90 \degree \\  \bf \: in \triangle OTQ\: \\   \bf  \:  \implies \:  \angle \: OQT\:  +  \angle \: OQT\angle +  \: TOQ \:  = 180 \degree \:  \\  \bf \implies \: 90 \degree  +  \angle \: OTQ +  60\degree = 180 \degree \: \\  \bf \therefore \angle \: OTQ \:  = 180  \degree- 150 \degree = 30 \degree

Similarly, :-

 \bf{\orange {\underline{\underline{\angle \: OSQ\:  =  \angle \: OST \:  = 30 \degree\:\:☞\:ans.}}}}

 \bf \huge{\rm{ \underline{ \underline{  Hence, \:\purple  P \green r  \orange o \blue o \pink v \blue e \purple d}}}}

Attachments:
Similar questions