please solve whole question and step by step explanation
Attachments:
Answers
Answered by
1
Step-by-step explanation:
Given :-
(Sin θ- 2 Sin³ θ)/(2 Cos³ θ- Cos θ)
To find :-
Prove that:
(Sin θ- 2 Sin³ θ)/(2 Cos³ θ- Cos θ)=Tan θ
Solution :-
On taking LHS :
=>(Sin θ- 2 Sin³ θ)/(2 Cos³ θ- Cos θ)
=>(Sin θ )( 1 - 2Sin² θ)/(Cos θ)(2 Cos² θ - 1)
=>(Sin θ/Cos θ) [(1-2 Sin² θ)/(2 Cos² θ -1)]
=> (Tan θ)[(1-2 Sin² θ)/(2 Cos² θ -1)]
We know that
Sin² A + Cos² A = 1
=> (Tanθ)[(Sin²θ+Cos²θ-2Sin²θ) ] /
[(2 Cos² θ -( Sin²θ+Cos²θ)]
=> (Tanθ)[(Cos²θ-Sin²θ)/(Cos²θ-Sin²θ)]
=>(Tanθ)(1)
=> Tanθ
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
(Sin θ- 2 Sin³ θ)/(2 Cos³ θ- Cos θ)=Tan θ
Used formulae:-
- Sin A/ Cos A = Tan A
- Sin² A + Cos² A = 1
Similar questions
Computer Science,
16 days ago
Math,
16 days ago
Math,
16 days ago
Math,
8 months ago
World Languages,
8 months ago