Math, asked by Anonymous, 10 months ago

please solve with full explanation​

Attachments:

Answers

Answered by Anonymous
34

Given :

  • Slant height of cone = 50 cm.
  • Radius of cone = 14 cm.

To find :

  • Curved surface area of cone.
  • Total surface area of cone.
  • Volume of cone.

Solution :

Slant height of cone = 50 cm.

Radius of cone = 14 cm.

Now find the height of cone

We know,

{\boxed{\red{\bold{l^2=h^2+r^2}}}}

Here ,

  • l = Slant height
  • r = Radius
  • h = height

\sf{l^2=h^2+r^2}

\implies\sf{50^2=h^2+14^2}

\implies\sf{2500=h^2+196}

\implies\sf{2500-196=h^2}

\implies\sf{2304=h^2}

\implies\sf{\sqrt{2304}=h}

\implies\sf{48=h}

{\boxed{\sf{Height\:of\:cone=48\:cm}}}

Now find the curved surface area of the cone

We know,

{\boxed{\bold{\purple{CSA\:of\:cone=\pi\:rl}}}}

\sf{\:\:\:\:\:CSA\:of\:cone=\pi\:rl}

\implies\sf{CSA\:of\:cone=\frac{22}{7}\times\:14\times\:50\:cm^2}

\implies\sf{CSA\:of\:cone=22\times\:2\times\:50\:cm^2}

\implies\sf{CSA\:of\:cone=2200\:cm^2}

{\boxed{\sf{CSA\:of\:cone=2200\:cm^2}}}

_______________________

Now find the total surface area of cone

We know,

{\boxed{\bold{\green{TSA\:of\:cone=\pi\:r(r+l)}}}}

\sf{\:\:\:\:\:TSA\:of\:cone=\pi\:r(r+l)}

\implies\sf{TSA\:of\:cone=\frac{22}{7}\times\:14(14+50)\:cm^2}

\implies\sf{TSA\:of\:cone=44\times\:64\:cm^2}

\implies\sf{TSA\:of\:cone=2816\:cm^2}

{\boxed{\sf{TSA\:of\:cone=2816\:cm^2}}}

_______________________

Now find the volume of the cone

We know,

{\boxed{\bold{\blue{Volume\:of\:cone=\frac{1}{3}\pi\:r^2h}}}}

\sf{\:\:\:\:\: Volume\:of\:cone=\frac{1}{3}\pi\:r^2h}

\implies\sf{Volume\: of\:cone=\frac{1}{3}\times\frac{22}{7}\times\:14^2\times\:48\:cm^3}

\implies\sf{Volume\: of\: cone=22\times\:2\times\:14\times\:16\:cm^3}

\implies\sf{Volume\: of\: cone=9856\:cm^3}

{\boxed{\sf{TSA\:of\:cone=9856\:cm^3}}}

_______________________

Answered by mddilshad11ab
29

\huge{\underline{\red{\rm{Solution:}}}}

\large{\underline{\green{\rm{Given:}}}}

  • The slant height of cone=50m
  • The radius of cone=14

\large{\underline{\purple{\rm{To\: Find:}}}}

  • \sf{C.S.A\:of\:Cone}

  • \sf{T.S.A\:of\:Cone}

  • \sf{Volume\:of\:Cone}

\large{\underline{\purple{\rm{Formula\: used:}}}}

  • \sf{C.S.A=\pi\:r\:l}

  • \sf{T.S.A=\pi\:r(l+r)}

  • \sf{Volume=\dfrac{1}{3}\pi\:r^2\:h}

\large{\underline{\orange{\rm{As\:per\: the\:above\: information:}}}}

\sf{\dashrightarrow l^2=r^2+h^2}

\sf{\dashrightarrow 50^2=14^2+h^2}

\sf{\dashrightarrow 2500=196+h^2}

\sf{\dashrightarrow h^2=2500-196}

\sf{\dashrightarrow h^2=2304}

\sf{\dashrightarrow h=\sqrt{2304}}

\sf\purple{\dashrightarrow h=48m}

  • Now finding the volume of cone

\sf{\dashrightarrow Volume=\dfrac{1}{3}\pi\:r^2\:h}

\sf{\dashrightarrow Volume=\dfrac{1}{3}*\dfrac{22}{7}*14^2*48}

\sf{\dashrightarrow Volume=\dfrac{1*22*196*48}{3*7}}

\sf{\dashrightarrow Volume=\dfrac{\cancel{206976}}{\cancel{21}}}

\sf\purple{\dashrightarrow Volume=9856\:m^3}

  • Similarly, find the C.S.A of cone

\sf{\dashrightarrow C.S.A=\pi\:r\:l}

\sf{\dashrightarrow C.S.A=\dfrac{22}{\cancel{7}}*\cancel{14}*50}

\sf{\dashrightarrow C.S.A=22*2*50}

\sf\purple{\dashrightarrow C.S.A=2200\:m^2}

  • Than, find the T.S.A of cone

\sf{\dashrightarrow T.S.A=\pi\:r(l+r)}

\sf{\dashrightarrow T.S.A=\dfrac{22}{7}*14*(50+14)}

\sf{\dashrightarrow T.S.A=\dfrac{22}{\cancel{7}}*\cancel{14}*64}

\sf{\dashrightarrow T.S.A=22*2*64}

\sf\purple{\dashrightarrow T.S.A=2816\:m^2}

Similar questions