Please solve with full explanation.
Answers
THANKS FOR ASKING MATE
QUESTION:-
(1) x = a tanθ and y = b cotθ
(2) x = a secθ and y = b cosecθ
(3) x = a cosθ and y = b sinθ
(4) x = a and y = b
SOLUTION:-
●firstly, we try to solve it with the help of 3 option...
→
● Here x = a cosθ and y = b sinθ
→
→
● so a^2 cancel out a^2 and b^2 cancel out b^2
→
● and we know the identity cosθ^2 + sinθ^2 = 1
→ 1 = 1 ( L.H.S = R.H.S)
HENCE PROVED...
ANSWER:-
(3) x = a cosθ and y = b sinθ is correct option
Step-by-step explanation:
theequation
a
2
x
2
+
b
2
y
2
=1istrueif
(1) x = a tanθ and y = b cotθ
(2) x = a secθ and y = b cosecθ
(3) x = a cosθ and y = b sinθ
(4) x = a and y = b
SOLUTION:-
●firstly, we try to solve it with the help of 3 option...
→ \frac{ {x}^{2} }{ {a}^{2} } + \frac{ {y}^{2} }{ {b}^{2} }
a
2
x
2
+
b
2
y
2
● Here x = a cosθ and y = b sinθ
→ \frac{ { (a \: cosθ)}^{2} }{ {a}^{2} } + \frac{ {(b \: sinθ)}^{2} }{ {b}^{2} }
a
2
(acosθ)
2
+
b
2
(bsinθ)
2
→ \frac{ {a}^{2} \: { \cosθ }^{2} }{ {a}^{2} } + \frac{{b}^{2}\: \ { \sinθ}^{2} }{ {b}^{2} }
a
2
a
2
cosθ
2
+
b
2
b
2
sinθ
2
● so a^2 cancel out a^2 and b^2 cancel out b^2
→ { \cosθ }^{2} + { \sinθ }^{2} cosθ
2
+sinθ
2
● and we know the identity cosθ^2 + sinθ^2 = 1
→ 1 = 1 ( L.H.S = R.H.S)
HENCE PROVED...
ANSWER:-
(3) x = a cosθ and y = b sinθ is correct option
hola Bhai
kaise ho aap