Math, asked by ayushmohanty1000, 5 hours ago

please solve with Process and Soon​

Attachments:

Answers

Answered by chhatarsingh642
1

Answer:

x is equal to 60 and Y is equal to 40

Answered by asmitshaw3
0

Answer:

Answer:

The area of the trapezium is 1644 m².

Step-by-step-explanation:

NOTE: Refer to the attachment for the diagram.

In figure, □ABCD is a trapezium.

AB ∥ CD

AB = 60 m

CD = 77 m

AD = 25 m

BC = 26 m

Now,

Draw BP ∥ AD and BQ ⊥ PC.

∴ □ABPD is a parallelogram.

∴ AB = PD = 60 m

AD = BP = 25 m

Now,

CD = PD + PC - - - [ C - P - D ]

⇒ PC = CD - PD

⇒ PC = 77 - 60

⇒ PC = 17 m

Now, in △BPC,

BP ( a ) = 25 m

PC ( b ) = 17 m

BC ( c ) = 26 m

Semi perimeter = ( Sum of sides ) / 2

⇒ s = ( a + b + c ) / 2

⇒ s = ( 25 + 17 + 26 ) / 2

⇒ s = ( 25 + 25 + 17 + 1 ) / 2

⇒ s = ( 50 + 18 ) / 2

⇒ s = 68 ÷ 2

⇒ s = 34 m

Now, by Heron's formula,

Area of triangle = √[ s ( s - a ) ( s - b ) ( s - c ) ]

⇒ A ( △BPC ) = √[ 34 ( 34 - 25 ) ( 34 - 17 ) ( 34 - 26 ) ]

⇒ A ( △BPC ) = √( 34 * 9 * 17 * 8 )

⇒ A ( △BPC ) = √( 17 * 2 * 9 * 17 * 8 )

⇒ A ( △BPC ) = √( 17 * 17 * 3 * 3 * 16 )

⇒ A ( △BPC ) = √( 17 * 17 * 3 * 3 * 4 * 4 )

⇒ A ( △BPC ) = 17 * 3 * 4

⇒ A ( △BPC ) = 204 m²

Also,

Area of triangle = ( Base * Height ) / 2

⇒ A ( △BPC ) = ( PC * BQ ) / 2

⇒ 204 = ( 17 * BQ ) / 2

⇒ 17 * BQ = 204 * 2

⇒ BQ = ( 204 * 2 ) / 17

⇒ BQ = 204 ÷ 17 * 2

⇒ BQ = 12 * 2

⇒ BQ = 24 m

Now, we know that,

Area of trapezium = ( Sum of parallel sides * Height ) / 2

⇒ A ( □ABCD ) = [ ( AB + CD ) * BQ ] / 2

⇒ A ( □ABCD ) = [ ( 60 + 77 ) * 24 ] / 2

⇒ A ( □ABCD ) = ( 60 + 77 ) * 24 ÷ 2

⇒ A ( □ABCD ) = ( 60 + 77 ) * 12

⇒ A ( □ABCD ) = 12 * 60 + 12 * 77

⇒ A ( □ABCD ) = 720 + 12 * ( 70 + 7 )

⇒ A ( □ABCD ) = 720 + 840 + 84

⇒ A ( □ABCD ) = 1560 + 84

⇒ A ( □ABCD ) = 1644

∴ Area of trapezium = 1644 m²

∴ The area of the trapezium is 1644 m².

Similar questions