Math, asked by daisy272828282828288, 14 days ago

please solve with solution ​

Attachments:

Answers

Answered by Anonymous
25

Given,

 \sf \:  \dfrac{d}{dx}  \bigg \{  \dfrac{a - b \cos(x) }{a + b \cos(x) } \bigg \}

Consider

 \sf \: y = \dfrac{a - b \cos(x) }{a + b \cos(x) }

Taking log on both sides,

 \implies \sf \: log(y) = log  \bigg| \dfrac{a - b \cos(x) }{a + b \cos(x) }  \bigg | \\  \\  \implies \sf \:  log(y) = log |a - b \cos(x) |  -  log |a + b \cos(x) |

Differentiating w.r.t x (Chain Rule) -

 \implies \sf \:  \dfrac{1}{y}  \times  \dfrac{dy}{dx}  =  \dfrac{b \sin(x) }{a - b \cos(x) }  -  \dfrac{ - b \sin(x) }{a + b \cos(x) }  \\  \\ \implies \sf \:  \dfrac{1}{y}  \times  \dfrac{dy}{dx}  = \dfrac{b \sin(x) (a + b \cos(x)) + b \sin(x) ( a - b \cos(x) ) }{(a + b \cos(x))(a - b \cos(x) ) }  \\  \\ \implies \sf \:   \dfrac{dy}{dx}  = \bigg \{ \dfrac{2ab \sin(x) }{(a + b \cos(x))(a - b \cos(x) )}  \bigg \} \times  \dfrac{a - b \cos(x) }{a + b \cos(x) }  \\  \\ \implies  \boxed{ \boxed{\sf \:   \dfrac{dy}{dx}  = \dfrac{2ab \sin(x) }{(a + b \cos(x)) {}^{2}  } }}

Option (b) is correct.

Similar questions