Math, asked by daisy272828282828288, 5 days ago

please solve with solution ​

Attachments:

Answers

Answered by prajithnagasai
1

Answer:

 \frac{d}{dx} ( \sin( \sqrt{2x  - 3} )  = \frac{ \cos(2x - 3) }{ \sqrt{2x - 3} } (1)

Step-by-step explanation:

 \frac{d}{dx}( \sin( \sqrt{2x - 3}  \:)

  =  \cos( \sqrt{2x - 3} )  \times  \frac{d}{dx} ( \sqrt{2x - 3} ) - eq.1

Here,

 \frac{d}{dx} ( \sqrt{2x - 3})  =  \frac{1}{2 \sqrt{2x - 3} }  \times  \frac{d}{dx} (2x - 3)

 \frac{d}{dx}  (\sqrt{2x - 3} ) =  \frac{1}{ \sqrt{2x - 3} }

Now substitute this value in eq.1

So,

 \frac{d}{dx} ( \sin(2x - 3) ) =  \frac{ \cos(2x - 3) }{ \sqrt{2x - 3} }

Formulae used:

1) \frac{d}{dx} ( \sin(x) ) =  \cos(x)

2) \frac{d}{dx} ( {x}^{n} ) = n {x}^{n - 1}

Similar questions