Math, asked by daisy272828282828288, 2 months ago

please solve with solution ​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

  f(x) =   \frac{ {a}^{x} }{ {x}^{a} }  \\

Now, differentiating both sides w.r.t. x,

   \frac{d \{f(x) \}}{dx} =  \frac{d}{dx}  \bigg(  \frac{ {a}^{x} }{ {x}^{a} }  \bigg) \\

    \implies \: f ^{ \prime}(x) =    \frac{ {x}^{a}   .\frac{d}{dx}( {a}^{x}) -  {a}^{x} . \frac{d}{dx}( {x}^{a} )  }{ ({x}^{a} )^{2} } \\

    \implies \: f ^{ \prime}(x) =    \frac{ {x}^{a}   . {a}^{x}. ln(a)  -  {a}^{x} . a. {x}^{a - 1}  }{ {x}^{2a}  } \\

Now,

    \implies \: f ^{ \prime}(a) =    \frac{ {a}^{a}   . {a}^{a}. ln(a)  -  {a}^{a} . a. {a}^{a - 1}  }{ {a}^{2a}  } \\

    \implies \: f ^{ \prime}(a) =    \frac{ {a}^{a + a}   . ln(a)  -  {a}^{a + 1 + a - 1}  }{ {a}^{2a}  } \\

    \implies \: f ^{ \prime}(a) =    \frac{ {a}^{2a }   . ln(a)  -  {a}^{2a}  }{ {a}^{2a}  } \\

    \implies \: f ^{ \prime}(a) =    \frac{ {a}^{2a }   .  \{ln(a)  - 1\}  }{ {a}^{2a}  } \\

    \implies \: f ^{ \prime}(a) =   ln(a)  - 1  \\

So,

\rm \large\:\bold{f^{\prime}(a)=ln(a)-1}

Similar questions