Math, asked by daisy272828282828288, 1 month ago

please solve with solution ​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \limits^{2}_{0}(3 {x}^{2}  + 4x + 3)dx \\

 =  \int \limits^{2}_{0}3 {x}^{2} \: dx  + \int \limits^{2}_{0}4x \: dx +\int \limits^{2}_{0}3 \: dx \\

 =  3\int \limits^{2}_{0}{x}^{2} \: dx  +4 \int \limits^{2}_{0}x \: dx +3\int \limits^{2}_{0} \: dx \\

 =  3  \bigg[ \frac{{x}^{3}}{3} \bigg ]^{2}_{0} +4 \bigg[ \frac{{x}^{2}}{2} \bigg ]^{2}_{0}  +3 \bigg[ x \bigg ]^{2}_{0}  \\

 =  3  \bigg[ \frac{{2}^{3}}{3}  - 0\bigg ]+4 \bigg[ \frac{{2}^{2}}{2}  - 0\bigg ]  +3 \bigg[ 2 - 0 \bigg ]  \\

 =  3   \times  \frac{8}{3} +4  \times  \frac{4}{2}  +3  \times  2  \\

 =  8 +2  \times  4  +3  \times  2  \\

 =  8 +8  +6  \\

 =  22 \\

Similar questions