Math, asked by arunkumarsingh224466, 9 months ago

please solved matrix ​

Attachments:

Answers

Answered by Anonymous
1

Question:-

Solve the following matrix equation for x and y

 :  \implies  \left[ \begin{array}{ccc} \rm \: x {}^{2}  \\   \rm{y}^{2}  \end{array} \right ] + 2\left[ \begin{array}{ccc} \rm \: 2x {}^{}  \\   \rm{3y}^{}  \end{array} \right ]  = 3\left[ \begin{array}{ccc} \rm \: {7}^{}  \\   \rm{ - 3}^{}  \end{array} \right ]

Solution:-

 \implies  \left[ \begin{array}{ccc} \rm \: x {}^{2}  \\   \rm{y}^{2}  \end{array} \right ] + 2\left[ \begin{array}{ccc} \rm \: 2x {}^{}  \\   \rm{3y}^{}  \end{array} \right ]  = 3\left[ \begin{array}{ccc} \rm \: {7}^{}  \\   \rm{ - 3}^{}  \end{array} \right ]

 \implies  \left[ \begin{array}{ccc} \rm \: x {}^{2}  \\   \rm{y}^{2}  \end{array} \right ] + \left[ \begin{array}{ccc} \rm \: 4x {}^{}  \\   \rm{6y}^{}  \end{array} \right ]  = \left[ \begin{array}{ccc} \rm \: {21}^{}  \\   \rm{ - 9}^{}  \end{array} \right ]

Now we have get

 \implies \rm  {x}^{2}  + 4x = 21

 \rm \:  \implies {y}^{2}  + 6y =  - 9

Now take

 \implies \rm  {x}^{2}  + 4x = 21

Using factorization method

 \implies \rm  {x}^{2}  + 4x  - 21=0

 \implies \rm  {x}^{2}  +7x - 3x  - 21=0

\implies \rm x(x + 7) - 3(x + 7) = 0

\implies \rm (x - 3)(x + 7) = 0

\implies \rm x = 3 \:  \:  \: and \:  \: x =  - 7

So value of x = 3 and x = - 7

Now take

\rm \:  \implies {y}^{2}  + 6y =  - 9

\implies \rm  {y  }^{2}   + 6y+ 9 = 0

\implies \rm y {}^{2}  + 3y + 3y + 9 = 0

\implies \rm y(y + 3) + 3(y + 3) = 0

\implies \rm (y + 3)(y + 3) = 0

\implies \rm y =  - 3 \:  \:  \: and \:  \: y =  - 3

So value of y = - 3 and y = - 3

Similar questions