Please some one prove : cot A-cos A / cot A+cosA = cosec A-1/ cosec A+1
Answers
Answered by
4
L.H.S=(cot A-cos A)/(cot A+cos A)
=[(cos A/sin A)-cos A]/[(cos A/sin A)+cos A]
=[(cos A-cos A×sin A)/sin A]/[(cos A+cos A×sin A)/sin A]
=[cos A(1-sin A)]/[cos A(1+sin A)]
=(1-sin A)/(1+sin A)
R.H.S=(cosec A-1)/(cosec A+1)
=[(1/sin A)-1]/[(1/sin A)+1]
=[(1-sin A)/sin A]/[(1+sin A)/sin A]
=(1-sin A)/(1+sin A)
L.H.S=R.H.S
=[(cos A/sin A)-cos A]/[(cos A/sin A)+cos A]
=[(cos A-cos A×sin A)/sin A]/[(cos A+cos A×sin A)/sin A]
=[cos A(1-sin A)]/[cos A(1+sin A)]
=(1-sin A)/(1+sin A)
R.H.S=(cosec A-1)/(cosec A+1)
=[(1/sin A)-1]/[(1/sin A)+1]
=[(1-sin A)/sin A]/[(1+sin A)/sin A]
=(1-sin A)/(1+sin A)
L.H.S=R.H.S
Similar questions
Economy,
8 months ago
Business Studies,
8 months ago
Biology,
1 year ago
Social Sciences,
1 year ago
History,
1 year ago