Math, asked by kritpradhan, 9 months ago

please somebody help me in this sum​

Attachments:

Answers

Answered by prince5132
9

 \large\bf\underline{\green{Given:}}

 \implies \sf \tan( \theta)  =  \frac{5}{12}

 \large\bf\underline{\green{To  \: \:Find :}}

 \implies \sf \frac{ \cos \theta -  \sin \theta }{ \cos \theta +  \sin \theta }

 \large\bf\underline{\green{Sollution :}}

 \bf \: as \: we \: know \: that \:  \tan( \theta)  =  \frac{p}{b}  \\ \bf \: now .........\\   \\  \implies \bf \: (hypotenuse) ^{2}  \:  =  \sf \: (perpendicular)^{2}  + (base) ^{2}  \\  \\  \implies \:   \bf \: (hyputenuse) ^{2} =  \sf \: (5) ^{2}  + (12) ^{2}  \\  \\  \implies  \bf (hyputenuse) ^{2} =  \: \sf \: 25 + 144  \\  \\  \implies \bf \: (hyputenuse)  =  13

Now , cos θ = B/h and sin θ = P/h

 \sf \implies \:   \sf \frac{ \cos \theta -  \sin \theta }{ \cos \theta +  \sin \theta }  \\  \\  \implies \sf \:  \frac{ \frac{12}{13} - \frac{5}{13}  }{ \frac{12}{13} +  \frac{5}{13}  }  \\  \\  \implies \sf \frac{ \frac{7}{13} }{ \frac{17}{13} }  \\  \\ \implies \bf  \frac{7}{17}

Hence the value of (cos θ - sin θ )/(cos θ + sin θ) = 7/17

Answered by Anonymous
20

Given ,

Tan(Φ) = 5/12 = P/B

By Pythagoras theorem ,

(h)² = (5)² + (12)²

(h)² = 25 + 144

h = √169

h = ± 13

Therefore ,

  • Hypotenuse = 13 units
  • Cos(Φ) = B/H = 12/13
  • Sin(Φ) = P/H = 5/13

And

Cos(Φ) - Sin(Φ) ÷ Cos(Φ) - Sin(Φ) will be equal to

 \sf \rightarrow \frac{ \frac{12}{13} -  \frac{5}{13}  }{ \frac{12}{13}  +  \frac{5}{13} }  \\  \\  \sf \rightarrow \frac{7}{17}

 \sf \therefore \underline{The \:  required \:  value \:  is \:  \frac{7}{17}  }

Similar questions