Math, asked by diksha588, 2 months ago

please someone solve this. ​

Attachments:

Answers

Answered by Anonymous
43

Question:-

Prove the identity:-

  • \sf{\dfrac{Sin\theta}{Cot\theta + Cosec\theta} = 2 + \dfrac{Sin\theta}{Cot\theta - Cosec\theta}}

Solution:-

Taking LHS,

\sf{\dfrac{Sin\theta}{Cot\theta + Cosec\theta}}

We already know:-

  • \sf{Cot\theta = \dfrac{Cos\theta}{Sin\theta}}

  • \sf{Cosec\theta = \dfrac{1}{Sin\theta}}

Hence,

 = \sf{\dfrac{Sin\theta}{\dfrac{Cos\theta}{Sin\theta} + \dfrac{1}{Sin\theta}}}

 = \sf{\dfrac{Sin\theta}{\dfrac{Cos\theta + 1}{Sin\theta}}}

 = \sf{\dfrac{Sin\theta \times Sin\theta}{Cos\theta + 1}}

 = \sf{\dfrac{Sin^2\theta}{Cos\theta + 1}}

We also know:-

  • Sin²θ + Cos²θ = 1
  • => Sin²θ = 1 - Cos²θ

Hence,

 = \sf{\dfrac{1 - Cos^2\theta}{1 + Cos\theta}}

Applying the identity - = (a + b)(a - b):-

 = \sf{\dfrac{(1 + Cos\theta)(1 - Cos\theta)}{1 + Cos\theta}}

 = \sf{1 - Cos\theta}

______________

Taking RHS:-

\sf{2 + \dfrac{Sin\theta}{Cot\theta - Cosec\theta}}

=\sf{2 + \dfrac{Sin\theta}{\dfrac{Cos\theta}{Sin\theta} - \dfrac{1}{Sin\theta}}}

=\sf{2 + \dfrac{Sin\theta}{\dfrac{Cos\theta - 1}{Sin\theta}}}

=\sf{2 + \dfrac{Sin\theta \times Sin\theta}{Cos\theta - 1}}

 = \sf{2 - \bigg(\dfrac{Sin^2\theta}{1 - Cos\theta}\bigg)}

 = \sf{2 - \bigg(\dfrac{1 - Cos^2\theta}{1 - Cos\theta}\bigg)}

 = \sf{2 - \bigg(\dfrac{(1 - Cos\theta)(1 + Cos\theta)}{1 - Cos\theta}\bigg)}

 = \sf{2 - (1 + Cos\theta)}

 = \sf{2 - 1 - Cos\theta}

 = \sf{1 - Cos\theta}

Hence, LHS = RHS (Proved)

______________________________________

Similar questions