Math, asked by dishantsharma69, 1 month ago

please someone solve this
please answer if you know otherwise will be reported​

Attachments:

Answers

Answered by mathdude500
3

Given Question :-

Solve the following :

 \sf \: 3 \: tan\bigg[ \theta \:  - \dfrac{\pi}{12} \bigg] = tan\bigg[\theta  + \dfrac{\pi}{12} \bigg]

 \sf \: where \: 0 < \theta  < \dfrac{\pi}{12}

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

 \rm :\longmapsto\:\sf \: 3 \: tan\bigg[ \theta \:  - \dfrac{\pi}{12} \bigg] = tan\bigg[\theta  + \dfrac{\pi}{12} \bigg]

Let assume that,

\red{\rm :\longmapsto\:\dfrac{\pi}{12} = x}

So, given equation can be rewritten as

\rm :\longmapsto\:3tan(\theta  - x) = tan(\theta  + x)

\rm :\longmapsto\:3\dfrac{sin(\theta  - x)}{cos(\theta  - x)}  = \dfrac{sin(\theta  + x)}{cos(\theta  + x)}

\rm :\longmapsto\:\dfrac{sin(\theta  + x)cos(\theta  - x)}{cos(\theta  + x)sin(\theta  - x)}  = 3

can be rewritten as

\rm :\longmapsto\:\dfrac{sin(\theta  + x)cos(\theta  - x)}{cos(\theta  + x)sin(\theta  - x)}  = \dfrac{3}{1}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{sin(\theta  + x)cos(\theta  - x) + cos(\theta  + x)sin(\theta  - x)}{sin(\theta  + x)cos(\theta  - x) - cos(\theta  + x)sin(\theta  - x)}  = \dfrac{3 + 1}{3 - 1}

We know,

 \boxed{ \bf{ \: sin(x + y) = sinxcosy + sinycosx}} \\  \\  \boxed{ \bf{ \: sin(x - y) = sinxcosy - sinycosx}}

So, using this

\rm :\longmapsto\:\dfrac{sin(\theta  + x + \theta  - x)}{sin(\theta  + x - \theta  + x)}  = \dfrac{4}{2}

\rm :\longmapsto\:\dfrac{sin2\theta }{sin2x}  = 2

\rm :\longmapsto\:sin2\theta  = 2sin2x

On substituting the value of x, we get

\rm :\longmapsto\:sin2\theta  = 2 \: sin\bigg[2 \times \dfrac{\pi}{12} \bigg]

\rm :\longmapsto\:sin2\theta  = 2 \: sin\bigg[ \dfrac{\pi}{6} \bigg]

\rm :\longmapsto\:sin2\theta  = 2 \:  \times \dfrac{1}{2}

\rm :\longmapsto\:sin2\theta  = 1

As it is given that

 \boxed{ \bf{ \: 0 < \theta  < \dfrac{\pi}{2}}}

Therefore,

\rm :\longmapsto\:sin2\theta  = sin\dfrac{\pi}{2}

\rm :\longmapsto\:2\theta  = \dfrac{\pi}{2}

\bf\implies \:\theta  = \dfrac{\pi}{4}

Additional Information :-

 \boxed{ \bf{ \: cos(x + y) = cosxcosy - sinxsiny}}

 \boxed{ \bf{ \: cos(x  -  y) = cosxcosy +  sinxsiny}}

 \boxed{ \bf{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}

 \boxed{ \bf{ \: tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanx \: tany}}}

 \boxed{ \bf{ \: sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

 \boxed{ \bf{ \: sinx  -  siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}

 \boxed{ \bf{ \: cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

 \boxed{ \bf{ \: cosx  -  cosy = -  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}

Similar questions