Math, asked by sushilkumar3213, 11 months ago

Please sove this ques​

Attachments:

Answers

Answered by shadowsabers03
0

\boxed{\begin {minipage}{1.5cm}$i^2=-1$\\\\$i^3=-i$\\\\$i^4=1$\\\\$i^5=i$\end{minipage}}

Thus

6i^5+7i^4+3i^3+5i^2-4=6i+7(1)+3(-i)+5(-1)-4\\\\6i^5+7i^4+3i^3+5i^2-4=6i+7-3i-5-4\\\\6i^5+7i^4+3i^3+5i^2-4=\mathbf{-2+3i}

Now we have it in the form a+ib.

Let's find its square root.

=================================

Let us have,

x+iy=\sqrt{a+ib}

where a and b are known and x and y have to be found. Then,

(x+iy)^2=a+ib\\\\x^2-y^2+2xyi=a+ib

Equating like coefficients,

a=x^2-y^2\quad\longrightarrow\quad (1)\\\\b=2xy\quad\longrightarrow\quad (2)

Then,

a^2=(x^2-y^2)^2\\\\a^2=x^4+y^4-2x^2y^2\\\\a^2+b^2=x^4+y^4-2x^2y^2+4x^2y^2\quad [\text {From (2)}]\\\\a^2+b^2=x^4+y^4+2x^2y^2\\\\a^2+b^2=(x^2+y^2)^2\\\\\sqrt{a^2+b^2}=x^2+y^2\quad\longrightarrow\quad (3)

(3) shows that the modulus of square of a complex number is the square of its modulus.

Adding (1) and (3), we get,

x=\pm\sqrt{\dfrac {\sqrt{a^2+b^2}+a}{2}}\\\\\\y=\pm\sqrt{\dfrac {\sqrt{a^2+b^2}-a}{2}}

Let \sqrt{a^2+b^2}=r. Then,

x=\pm\sqrt{\dfrac {r+a}{2}}\\\\\\y=\pm\sqrt{\dfrac {r-a}{2}}

But we should note the signs of real and imaginary parts too. Then, we get that,

\boxed{\sqrt{a+ib}=\left\{\begin{array}{l}\pm\left(\sqrt{\dfrac {r+a}{2}}+i\sqrt{\dfrac {r-a}{2}}\right),\ b\ \textgreater\ 0\\\\\pm\left(\sqrt{\dfrac {r+a}{2}}-i\sqrt{\dfrac {r-a}{2}}\right),\ b\ \textless\ 0\end{array}\right.}

=================================

Here,

a=-2\ \textless\ 0\\\\b=3\ \textgreater\ 0

r=\sqrt{(-2)^2+3^2}=\sqrt{4+9}=\sqrt{13}

Since b\ \textgreater\ 0,

\sqrt{a+ib}=\pm\left(\sqrt{\dfrac {r+a}{2}}+i\sqrt{\dfrac {r-a}{2}}\right)\\\\\\\boxed{\sqrt{-2+3i}=\pm\left(\sqrt{\dfrac {\sqrt{13}-2}{2}}+i\sqrt{\dfrac {\sqrt{13}+2}{2}}\right)}}

#answerwithquality

#BAL

Similar questions