Please tap on it and solve!!
Attachments:
Answers
Answered by
1
Correct Question
To prove:-
Sin θ (1 + tan θ) + Cos θ (1 + Cot θ ) = Cosec θ + Sec θ
Prove
We know,
★ tan θ = Sin θ/Cos θ .
★ Cot θ = Cos θ/Sin θ.
★ (Sin² θ + Cos² θ) = 1.
★ Sec θ = 1/Cos θ
★ Cosec θ = 1/ Sin θ
Take L.H.S.
➠ Sin θ (1 + tan θ) + Cos θ (1 + Cot θ )
Keep value of tan θ & Cot θ
➠ Sin θ ( 1 + Sin θ/Cos θ ) + Cos θ (1 + Cos θ/Sin θ )
➠ Sin θ ( Sin θ + Cos θ )/(Cos θ) + Cos θ ( Sin θ + Cos θ )/(Sin θ)
Take common (Sin θ + Cos θ)
➠ (Sin θ + Cos θ) [ Sin θ/Cos θ + Cos θ/Sin θ ]
➠ (Sin θ + Cos θ) [ (Sin² θ + Cos² θ)]/(Sin θ .Cos θ)
Keep value of (Sin² θ + Cos² θ)
➠ (Sin θ + Cos θ) [ 1/ (Sin θ.Cos θ) ]
➠ Sin θ/(Sin θ.Cos θ) + Cos θ/(Sin θ.Cos θ)
➠ 1/Cos θ + 1/Sin θ
➠ Cosec θ + tan θ
= R.H.S.
That's proved.
_________________
Similar questions