Math, asked by rakesh0909, 1 year ago

Please tell algebraic identities of class 9

Answers

Answered by Vishad091203
2
Hi pupil here's your answer ::

_____________________________

⚫Algebraic identities

✔FIRST : (A+B)^2 = A2 + 2AB + B2 (a numbers are the power after the variable )

✔SECOND : (A-B)^2 = A2 -2AB +B2

✔THIRD : a2-b2= (a-b ) (a +b)

✔FOURTH : (a-x) (a+y) = a2 + (x+y )a +xy

✔FIFTH: ( a+b+c )^2 = a2+b2+c2+2ab+2bc+2ca

✔SIXTH : (a-b)^3 = a3+b3+3ab (a+b)

✔SEVENTH: (a-b)^3 = a3-v3-3ab (a-b)

✔EIGHTH : a2+b2+c2-3abc= (a+b+c) (a2+b2+c2-ab-bc-ca)

_____________________________

HOPE THAT IT HELPS. . . . .

rakesh0909: Thank you
Answered by Anonymous
0

\begin{gathered}\boxed{\begin{array}{cc}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{array}}\end{gathered}

Similar questions