Math, asked by Anonymous, 6 months ago

please tell don't spam otherwise I will report you hard​

Attachments:

Answers

Answered by Anonymous
37

Given

  • Shape of field = equilateral triangle
  • Perimeter of the field = 66m

To find

  • Area of the triangle.

Solution

[First of all we need side of the triangular field to find area]

\sf\pink{⟶} Since, all sides are equal of a equilateral triangle.

\tt:\implies\: \: \: \: \: \: \: \: {Perimeter = 3a}

\tt:\implies\: \: \: \: \: \: \: \: {66 = 3a}

\tt:\implies\: \: \: \: \: \: \: \: {a = \dfrac{66}{3}}

\tt:\implies\: \: \: \: \: \: \: \: {a = 22}

\sf\pink{⟶} Now, using the formula area of a equilateral triangle we will find the area of the field.

\large{\underline{\boxed{\tt{Area = \dfrac{\sqrt{3}}{4}a^2}}}}

Now, solving further question

\tt:\implies\: \: \: \: \: \: \: \: {Area = \dfrac{\sqrt{3}}{4}(22)^2}

\tt:\implies\: \: \: \: \: \: \: \: {Area = \dfrac{\sqrt{3}}{4} × 484}

\tt:\implies\: \: \: \: \: \: \: \: {Area = \sqrt{3} × 121}

\sf\blue{⟶} \sqrt{3} = 1.73

\tt:\implies\: \: \: \: \: \: \: \: {Area = 1.73 × 121}

\tt:\implies\: \: \: \: \: \: \: \: {Area = 209.33m^2}

\sf\purple{⟶} Hence, the area of the field is 209.33m².

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions