Math, asked by ragpra222, 2 months ago

please tell guys
it is very important
9th question​

Attachments:

Answers

Answered by VεnusVεronίcα
38

\large \bf{\red{Appropriate~ question:}}

 \bf{ \dfrac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 } } = a  -  b \sqrt{3}

 \\

\large \bf{\red{Solution:}}

Rationalizing the denominator on LHS :

  : \implies \bf{ \dfrac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 } } \times  \bigg( \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}  \bigg)

 :  \implies \bf{ \dfrac{( \sqrt{3} - 1) ^{2}  }{( \sqrt{3}   + 1)( \sqrt{3}  - 1)} }

Using the identities :

  • (a - b) (a + b) = a² - b²
  • (a - b)² = a² + b² - 2ab

  : \implies \bf{ \dfrac{( \sqrt{3} ) ^{2} - 2( \sqrt{3})(1) +  {(1)}^{2}   }{ {( \sqrt{3} )}^{2}  - {(1})^{2} } }

 :  \implies \bf{ \dfrac{3 - 2 \sqrt{3}  + 1}{3 - 1} }

  : \implies \bf{ \dfrac{4  -  2 \sqrt{3} }{2} }

Taking out 2 as common term :

 :  \implies  \bf \dfrac{2(2 -  \sqrt{3} )}{2}

 :  \implies \bf{ \dfrac{ \cancel2(2 -  \sqrt{3}) }{ \cancel2} }

 :   \implies  \bf{2 -  \sqrt{3} }

When we compare this to RHS :

 \red{ \odot}  \:  \:  \: \bf a = 2 \\  \red { \odot} \:  \:  \:  \bf b = 1

Similar questions