Math, asked by aarna6270, 11 months ago

please tell how to calculate this-

Attachments:

Answers

Answered by rishika79
3

Answer:

133/132

Step-by-step explanation

Hope its help you

Have a great day

Attachments:
Answered by Anonymous
24

Answer:

 \boxed{\sf \frac{331}{132}}

Step-by-step explanation:

 \sf Simplify  \: the \:  following: \\  \sf \implies   \sqrt[3]{ \frac{8}{27} }  +  \sqrt[3]{ \frac{1728}{1331} }  +  \sqrt[3]{ \frac{27}{64} }  \\  \\  \sf  \sqrt[3]{ \frac{8}{27} }  =  \frac{ \sqrt[3]{8} }{  \sqrt[3]{27}  }  :  \\ \sf \implies  \boxed{\frac{ \sqrt[3]{8} }{  \sqrt[3]{27}  } } +  \sqrt[3]{ \frac{1728}{1331} }  +  \sqrt[3]{ \frac{27}{64} }  \\  \\  \sf  \sqrt[3]{27}  =  \sqrt[3]{ {3}^{3} }  = 3 :  \\  \sf \implies  \frac{ \sqrt[3]{8} }{ \boxed{3}}  +  \sqrt[3]{ \frac{1728}{1331} }  +  \sqrt[3]{ \frac{27}{64} }  \\  \\  \sqrt[3]{8}  =  \sqrt[3]{ {2}^{3} }  = 2 :  \\  \sf \implies  \frac{ \boxed{2}}{3}  + \sqrt[3]{ \frac{1728}{1331} }  +  \sqrt[3]{ \frac{27}{64} }

 \sf \sqrt[3]{ \frac{1728}{1331} }  =  \frac{ \sqrt[3]{1728} }{ \sqrt[3]{1331} }  :  \\  \sf \implies  \frac{2}{3}  +  \boxed{\frac{ \sqrt[3]{1728} }{ \sqrt[3]{1331} } } +  \sqrt[3]{ \frac{27}{64} }  \\  \\   \sqrt[3]{1331}  =  \sqrt[3]{ {11}^{3} }  = 11 :  \\  \sf \implies  \frac{2}{3}  +  \frac{ \sqrt[3]{1728} }{ \boxed{11}}  +  \sqrt[3]{ \frac{27}{64} }  \\  \\   \sf  \sqrt[3]{1728}  =  \sqrt[3]{ {2}^{6}  \times  {3}^{3} }  =  {2}^{2}  \times 3 :  \\  \sf \implies  \frac{2}{3}  +  \frac{ \boxed{ {2}^{2}   \times 3}}{11}  +  \sqrt[3]{ \frac{27}{64} }  \\  \\ \sf  {2}^{2}  = 4 :  \\  \sf \implies  \frac{2}{3}  +  \frac{ \boxed{4} \times 3}{11}  +  \sqrt[3]{ \frac{27}{64} }

 \sf 4 \times 3 = 12 :  \\  \sf \implies  \frac{2}{3}  +  \frac{ \boxed{12}}{11}  +  \sqrt[3]{ \frac{27}{64} }  \\  \\  \sf \sqrt[3]{ \frac{27}{64} } =  \frac{ \sqrt[3]{27} }{ \sqrt[3]{64} }  :  \\  \sf \implies \frac{2}{3}  +  \frac{12}{11}  +  \boxed{\frac{ \sqrt[3]{27} }{ \sqrt[3]{64} } } \\  \\  \sf \sqrt[3]{27} =  \sqrt[3]{ {3}^{3} }  = 3 :  \\  \sf \implies \frac{2}{3}  +  \frac{12}{11}  +   \frac{ \boxed{3}}{ \sqrt[3]{64} }  \\  \\  \sf \sqrt[3]{64}  =  \sqrt[3]{ {2}^{6} }  =  {2}^{2}  :  \\  \sf \implies \frac{2}{3}  +  \frac{12}{11}  +  \frac{3}{ \boxed{ {2}^{2} }}  \\  \\  \sf {2}^{2}  = 4 :  \\  \sf \implies \frac{2}{3}  +  \frac{12}{11}  +  \frac{3}{ \boxed{ 4}}  \\  \\  \sf Put \: \frac{2}{3}  +  \frac{12}{11}  +  \frac{3}{ 4} over \:  the \:  common  \: denominator \: 132 :  \\  \sf \implies  \frac{2  \times 44}{132}  +  \frac{12 \times 12}{132}  +  \frac{3 \times 33}{132}  \\  \\  \sf 2 \times 44 = 88 :   \\  \sf \implies \frac{ \boxed{88}}{132}  +  \frac{12 \times 12}{132}  +  \frac{3 \times 33}{132}  \\  \\  \sf 12 \times 12 = 144 :  \\  \sf \implies \frac{88}{132}  +  \frac{ \boxed{144}}{132}  +  \frac{3 \times 33}{132}

\sf 3 \times 33 = 99 :  \\  \sf \implies \frac{88}{132}  +  \frac{144}{132}  +  \frac{ \boxed{99}}{132}  \\  \\  \sf \frac{88}{132}  +  \frac{144}{132}  +  \frac{99}{132}  =  \frac{88 + 144 + 99}{132}  :   \\  \sf  \implies   \frac{88 + 144 + 99}{132} \\  \\  \sf 88 + 144 + 99 = 331 :  \\  \sf \implies  \frac{331}{132}

Similar questions