English, asked by kanu496, 1 year ago

please tell me amswer of this with solution and correct amswer will mark as brainlist

Attachments:

Answers

Answered by Anonymous
1
Answer :


Let sides of triangular side walls of fly-over be a,b and c metres

therefore,

a = 122 m
b = 22 m
c = 120 m

therefore,

semiperimeter \: (s) =  \frac{a + b + c}{2}  \\  \\  =  >  \: s \:  =  \frac{122 + 22 + 120}{2}  \\  \\  =  >  \: s =   \frac{264}{2}  \\  \\ =  >  \:  s = 132 \: m

By Heron's formula, area of triangular side of walls =>

 \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  =  >  \sqrt{132(132 - 122)(132 - 22)(132 - 120)}  \\  \\  =  >  \:  \sqrt{132 \times 10 \times 110 \times 12}  \\  \\  =  >  \sqrt{11 \times 12 \times 10 \times 10 \times 11 \times 12}  \\  \\  =  >  \sqrt{10 \times 10 \times 11 \times 11 \times 12 \times 12}  \\  \\  =  > 10 \times 11 \times 12 \\  \\  =  > 1320 \: m {}^{2}

rent \: for \: advertisement \: on \: wall   \\ \: for \: 1 \: year(i.e. \: 12 \: months) = rs. \: 5000 \: per \:  {m}^{2}  \\  \\ rent \: for \: advertisement \: on \: wall \\ for \:one \: month = rs. \:  \frac{5000}{12} \: per \:  {m}^{2}  \\  \\ rent \: for \: advertisement \: on \: wall \\ for \: 3 \: months = rs. \: ( \frac{5000}{12}  \times 3) \: per \:  {m}^{2}  \\  \\ now \: rent \: paid \: for \: advertisement \: per \:  {m}^{2}  = >  \\  \\  =  \: rs. \frac{5000}{4}  \\  \\ rent \: paid \: for \: advertisement \: 1320 \:  {m}^{2}  \\  \\  =  >  \: rs .( \frac{5 000 }{4}  \times 1320) \\  \\  =  > \:  rs.(5000 \times 330) \\  \\ rs. \: 1650000.

Hence rent paid by company = ₹ 16,50,000


HOPE IT WOULD HELP YOU
Similar questions