Math, asked by supsanjoshi, 6 months ago

please tell me correct answer of this and take brainalist mark​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

\lim _{x \rarr2 } \frac{ (\sqrt{1 + 2x -  {x}^{2} }  )- (x - 1)}{x - 2}  \\

 =  \lim _{x \rarr2 } \frac{(( \sqrt{1 + 2x -  {x}^{2} } ) - (x - 1))(( \sqrt{1 + 2x -  {x}^{2} })  +  (x - 1)) }{(x - 2)(( \sqrt{1 + 2x -  {x}^{2} }) + (x - 1) )}  \\

 = \lim _{x \rarr2 } \frac{1 + 2x -  {x}^{2}  -  {x}^{2} + 2x - 1 }{(x - 2)(( \sqrt{1 + 2x -  {x}^{2} }) + (x + 1)) }  \\

 = \lim _{x \rarr2 } \frac{ -2x(x - 2) }{(x - 2)(( \sqrt{1 + 2x -  {x}^{2} } ) + (x - 1))} \\

 = \lim _{x \rarr2 } \frac{ - 2x}{( \sqrt{1 + 2x -  {x}^{2} }) + (x - 1) }  \\

 =  \frac{ - 2   \times2 }{ \sqrt{1 + 4 - 4} + 2 - 1 }

 =  \frac{ -4 }{2}

 =  - 2

Similar questions