Math, asked by sanasiddhu1979, 21 days ago

PLEASE TELL ME FAST ​

Attachments:

Answers

Answered by kamalhajare543
46

if -5 is a root of the quadratic equation 3x^2+px+-15=0 and the quadratic equation p(x^2+x)+k=0 has equal roots, find k

Given:-

\textsf{-5 is a root of the equation}\;\mathsf{2x^2+px-15=0}

\textsf{and}\;\mathsf{p(x^2+x)+k=0}\;\textsf{has equal roots}

\underline{\textsf{To find:}}

\textsf{The value of p and k}

 \red{\huge\underbrace{\underline{\textsf{ \pink{Solution:}}}}}

\textsf{Let the other root of}

\mathsf{2x^2+px-15=0}\;\textsf{be 'u'}

\bf\textsf{Product of the roots:}

 \sf \: \mathsf{u(-5)=\dfrac{-15}{2}}u(−5) \\  \\ \mathsf{u=\dfrac{3}{2}}

\bf\textsf{Sum of the roots:}

\sf{\dfrac{13-10}{2}+(-5)}{\dfrac{-p}{2}}

 \sf \dfrac{3}{2}   = \dfrac{-p}{2}

 \sf\mathsf{\dfrac{-7}{2}=\dfrac{-p}{2}}\\ \\  \implies\boxed{\mathsf{p=7}} \\  \\ \textsf{Since}\;\mathsf{px^2+px+k=0}\textsf{has equal roots, we have}\\ \\ \mathsf{b^2-4ac=0}\mathsf{p^2-4(p)(k)=0} \\  \\ \mathsf{7^2-4(7)(k)=0} \\  \\ \sf \frac{49-28}{k}  \\  \\ \sf \frac{49=28}{k} \\  \\ \mathsf{k=\dfrac{49}{28}}\\  \\ \implies\boxed{\mathsf{k=\dfrac{7}{4}}}

Similar questions