Math, asked by ritu123r, 1 month ago

please tell me fast and please give correct answer solve it with the proper full calculation .​

Attachments:

Answers

Answered by mathdude500
11

Given Question :-

If

\rm :\longmapsto\:log\bigg[\dfrac{a - b}{2} \bigg] \:  = \dfrac{1}{2}\bigg[loga + logb\bigg]

then, prove that

\rm :\longmapsto\: {a}^{2} +  {b}^{2} = 6ab

 \purple{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:log\bigg[\dfrac{a - b}{2} \bigg] \:  = \dfrac{1}{2}\bigg[loga + logb\bigg]

can be rewritten as

\rm :\longmapsto\:2log\bigg[\dfrac{a - b}{2} \bigg] \:  = \bigg[loga + logb\bigg]

We know,

\boxed{ \tt{ \: bloga = log {a}^{b} \:  \: }}

and

\boxed{ \tt{ \: loga + logb = log(ab) \:  \: }}

So, using this, we get

\rm :\longmapsto\:log {\bigg[\dfrac{a - b}{2} \bigg]}^{2} = log(ab)

So, on comparing, we get

\rm :\longmapsto\: {\bigg[\dfrac{a - b}{2} \bigg]}^{2} = ab

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  - 2ab}{4} = ab

\rm :\longmapsto\: {a}^{2} +  {b}^{2}  - 2ab = 4ab

\rm :\longmapsto\: {a}^{2} +  {b}^{2}  =  2ab  +  4ab

 \red{\sf :\longmapsto\: {a}^{2} +  {b}^{2}  =  6ab \:  \: }

Hence, Proved

Additional Information :-

\boxed{ \tt{ \:  log_{x}(x) = 1 \:  \: }}

\boxed{ \tt{ \:  log_{ {x}^{a} }( {x}^{b} ) =  \frac{b}{a}  \:  \: }}

\boxed{ \tt{ \:  {e}^{logx}  = x \:  \: }}

\boxed{ \tt{ \:  {e}^{ylogx}  =  {x}^{y}  \:  \: }}

\boxed{ \tt{ \:  {a}^{ log_{a}(x) }  = x \:  \: }}

\boxed{ \tt{ \:  {a}^{ ylog_{a}(x) }  =  {x}^{y}  \:  \: }}

Similar questions