Math, asked by neeturajsingh, 2 months ago

please tell me fast it's urgent ​

Attachments:

Answers

Answered by BrainlyArnab
1

 \huge \boxed { \sf \blue{a = 3  .  b =  - 2}}

Step-by-step explanation:

Q.

 \sf \: find \: the \: value \: of \: a \: and \: b  \\  \sf \frac{ \sqrt{2}  - 1}{ \sqrt{2} + 1 }  = a + b \sqrt{2}

Solution -

 \sf \: first \: we \: will \: rationalise \: the \: denominator \\   \\  \sf  =  >  \frac{ \sqrt{2}  - 1}{ \sqrt{2}  + 1}  \\  \\  =  >  \sf  \frac{ \sqrt{2} - 1 }{ \sqrt{2}  + 1}  \times  \frac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1}  \\  \\  =  >   \sf\frac{ {( \sqrt{2}  - 1)}^{2} }{( \sqrt{2}   {)}^{2}  -  {1}^{2} }  \\ \sf (by \: the \: formula \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2} ) \\  \\  =  >  \sf \frac{( \sqrt{2}  {)}^{2} - 2( \sqrt{2}  )(1) +  {1}^{2} }{2 - 1}  \\ ( \sf \: by \: the \: formula \: ( {a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2} ) \\  \\  =  >  \sf \frac{2 - 2 \sqrt{2}  + 1}{1}  \\  \\  =  > \sf2 + 1 - 2 \sqrt{2}  \\  \\  =  >  \sf3 - 2 \sqrt{2}

Hence a = 3 & b = -2

hope it helps.

Similar questions