please tell me how to prove this
Attachments:
Answers
Answered by
9
Solution: Let's solve L.H.S first,
L.H.S. → tan²A/(tan²A - 1) + csc²∅/(sec²A - csc²∅)
- tanA = sinA/cosA
- cscA = 1/sinA
- secA = 1/cosA
→ (sin²A/cos²A)/(sin²A/cos²A - 1) + (1/sin²A)/(1/cos²A - 1/sin²A)
On taking L.C.M. of denominators
→ (sin²A/cos²A)/(sin²A - cos²A)/cos²A + (1/sin²A)/(sin²A - cos²A)/cos²A sin²A
Changing division sign into multiplication by reciprocal
→ (sin²A/cos²A) × cos²A/(sin² - cos²A) + (1/sin²A) × cos²A sin²A/(sin²A - cos²A)
→ sin²A/(sin² - cos²A) + cos²A/(sin² - cos²A)
Taking denominators as common
→ (sin²A + cos²A)/(sin²A - cos²A)
Using identity, sin²A + cos²A = 1
→ 1/(sin²A - cos²A)
“sin²A + cos²A = 1 → sin²A = 1 - cos²A”
→ 1/(1 - cos²A - cos²A)
→ 1/(1 - 2cos²A) = R.H.S.
Answered by
0
Answer:
heres your answer buddy...
take care : )
Attachments:
Similar questions