Math, asked by itachi4750oyc9on, 1 day ago

Please tell me how to solve this \int\limits^0_1 {e^{-4x} } \, dx

Answers

Answered by vikkiain
1

\frac{1}{4}( \frac{1}{ {e}^{4}} - 1 )

Step-by-step explanation:

Given, \:  \:  \: \int\limits^0_1 {e^{-4x} } \, dx \\ let, \:  \: y =  - 4x \\ Differentiating \:  \:  with  \:  \: respect \:  \:  to \:  \:  x, \\ dy =  - 4dx \\ or,  \:  \:  \: dx =  \frac{ - 1}{4} dy \\ and \:  \: y = 0 \:  \: at \:  \: x = 0 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  - 4 \:  \: at \:  \: x = 1 \\ now,  \:  \: \int\limits^0_1 {e^{-4x} } \, dx  = \frac{ -1 }{4}  \int\limits^0_ {- 4} {e^{y} }dy \\  =  \frac{ - 1}{4} [ {e}^{y} ]^0_ {- 4} \\  =  \frac{ - 1}{4} [ {e}^{0}  -  {e}^{ - 4} ] \\  =  \frac{ - 1}{4}(1 -  \frac{1}{ {e}^{4} } )  \\  =  \frac{1}{4}( \frac{1}{ {e}^{4}} - 1 )

Similar questions