Math, asked by anshumanray2019, 1 year ago

Please tell me the 14 th question

Attachments:

Answers

Answered by Aryanshishodia
0

Answer:

Step-by-step explanation:

Attachments:
Answered by muskanc918
2

Answer:

Given ABCD is a ||gm such that its sides touch a circle with centre O.

∴ AB = CD and AB || CD,

AD = BC and AD || BC

Now, P, Q, R and S are the touching point of both the circle and the ||gm

We know that, tangents to a circle from an exterior point are equal in length.

∴ AP = AS  [Tangents from point A]  ...  (1)

 BP = BQ  [Tangents from point B] ...  (2)

 CR = CQ  [Tangents from point C] ...  (3)

 DR = DS  [Tangents from point D] ...  (4)

On adding (1), (2), (3) and (4), we get

AP + BP + CR + DR = AS + BQ + CQ + DS

⇒ (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)

⇒ AB + CD = AD + BC

⇒ AB + AB = BC + BC  [∵ ABCD is a  ||gm . ∴ AB = CD and AD = BC]

⇒ 2AB = 2BC

⇒ AB = BC

Therefore, AB = BC implies

AB = BC = CD = AD

Hence, ABCD is a rhombus.


anshumanray2019: Wow thanks bro
anshumanray2019: Ok
anshumanray2019: O sry
anshumanray2019: Class 10??
anshumanray2019: Which school?
Similar questions