Math, asked by rc4ramachandra, 2 months ago

please tell me the answer 18,19​

Attachments:

Answers

Answered by Anonymous
61

-: Question 18 :-

Given :-

α , β and γ are the zeroes of the polynomial f ( x ) = ax³ + bx² + cx + d

To Find :-

The Value of α² + β² + γ²

Used Concepts :-

We knows that , for a cubic polynomial ax³ + bx² + cx + d with zeroes " α , β and γ " :-

  • α + β + γ = -b/a

  • α β γ = -d/a

  • αβ + βγ + γα = c/a

Solution :-

Now , For f ( x ) = ax³ + bx² + cx + d

α + β + γ = -b/a

α β γ = -d/a

αβ + βγ + γα = c/a

Now , We have to find the value of α² + β² + γ². We will use a algebraic identity to find it .

=> ( α + β + γ )² = α² + β² + γ² + 2αβ + 2βγ + 2γα

=> ( α + β + γ )² = ( α² + β² + γ² ) + 2( αβ + βγ + γα )

=> Putting all the values we get,.

=> ( -b/a )² = ( α² + β² + γ² ) + 2( c/a )

=> b²/a² = ( α² + β² + γ² ) + 2c/a

=> ( α² + β² + γ² ) = b²/a² - 2c/a

=> ( α² + β² + γ² ) = b² - 2ac/a²

Henceforth , Our Required answer is ( d )

-: Question 19 :-

Given :-

α , β and γ are the zeroes of the polynomial f ( x ) = x³ - px² + qx - r

To Find :-

The Value of 1/αβ + 1/βγ + 1/γα

Solution :-

On comparing f ( x ) with the standard form of a cubic polynomial i.e ax³ + bx² + cx + d we get ,

a = 1 , b = - p , c = q and d = - r

Now , As α , β and γ are zeroes of f ( x ) . So ;

=> α β γ = -d/a = - ( - r )/1 = r

=> α + β + γ = -b/a = - ( - p )/1 = p

Now , We have to find value of 1/αβ + 1/βγ + 1/γα which can be simplified as follows :-

=> 1/αβ + 1/βγ + 1/γα

=> Taking L.C.M ;

=> γ + α + β/α × β × γ

=> α + β + γ/α × β × γ

=> Putting all values we get ;

=> p/r

Henceforth , Our Required Answer is ( b ) .

Additional Information :-

For a Bi-quadratic polynomial " ax⁴ + bx³ + cx² + dx + e " with zeroes " α , β , γ and δ " :-

  • α + β + γ + δ = -b/a
  • αβγδ = e/a
  • ( α + β ) ( γ + δ ) + αβ + γδ = c/a
  • αβ ( γ + δ ) + γδ ( α + β ) = -d/a
Answered by mathdude500
4

\large\underline{\sf{Solution-18}}

Given that,

\rm :\longmapsto\: \alpha, \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3}  +  {bx}^{2} + cx + d

We know,

\boxed{\red{\sf  \alpha +   \beta  +  \gamma =\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

\bf\implies \: \alpha +   \beta +   \gamma  =  - \dfrac{b}{a}

Also,

\boxed{\red{\sf  \alpha \beta  +   \beta  \gamma  +  \gamma \alpha  =\frac{-coefficient\ of\  {x}^{2} }{coefficient\ of\ x^{3}}}}

\bf\implies \: \alpha \beta  +   \beta \gamma  +   \gamma   \alpha =  \dfrac{c}{a}

Also,

\boxed{\red{\sf  \alpha  \beta  \gamma =\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  \gamma  =  - \dfrac{d}{a}

Consider,

\rm :\longmapsto\: { \alpha }^{2}  +  { \beta }^{2}   +  { \gamma }^{2}

\rm \:  =  \:  {( \alpha  +  \beta  +  \gamma) }^{2} - 2( \alpha  \beta  +  \beta  \gamma   + \gamma  \alpha )

\rm \:  =  \:  {\bigg(\dfrac{ - b}{a} \bigg)}^{2} - 2\bigg(\dfrac{c}{a} \bigg)

\rm \:  =  \: \dfrac{ {b}^{2} }{ {a}^{2} }  - \dfrac{2c}{a}

\rm \:  =  \: \dfrac{ {b}^{2}  - 2ac}{ {a}^{2} }

Hence, Option (d) is correct.

\large\underline{\bf{Solution-19}}

Given that,

\rm :\longmapsto\: \alpha, \beta , \gamma  \: are \: zeroes \: of \:  {x}^{3}   - {px}^{2} + qx  - r

We know,

\boxed{\blue{\sf  \alpha +   \beta  +  \gamma =\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

\bf\implies \: \alpha  +  \beta   + \gamma  =  - \dfrac{ ( - p)}{1}  = p

Also,

\boxed{\blue{\sf  \alpha \beta  +   \beta  \gamma  +  \gamma \alpha  =\frac{-coefficient\ of\  {x}^{2} }{coefficient\ of\ x^{3}}}}

\bf\implies \: \alpha \beta   +  \beta \gamma    + \gamma \alpha   =   \dfrac{q}{1}  = q

Also,

\boxed{\blue{\sf  \alpha  \beta  \gamma =\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  \gamma  =  - \dfrac{( - r)}{1}  = r

Consider,

\rm :\longmapsto\:\dfrac{1}{ \alpha  \beta }  + \dfrac{1}{ \beta  \gamma }  + \dfrac{1}{ \gamma  \alpha }

\rm \:  =  \: \dfrac{ \gamma  +  \beta  +  \alpha }{ \alpha  \beta  \gamma }

\rm \:  =  \: \dfrac{p}{r}

Hence, Option (b) is correct.

Similar questions